Commit | Line | Data |
---|---|---|
4fed76cc BA |
1 | #' EMGrank |
2 | #' | |
3 | #' Description de EMGrank | |
4 | #' | |
c280fe59 BA |
5 | #' @param Pi Parametre de proportion |
6 | #' @param Rho Parametre initial de variance renormalisé | |
7 | #' @param mini Nombre minimal d'itérations dans l'algorithme EM | |
8 | #' @param maxi Nombre maximal d'itérations dans l'algorithme EM | |
9 | #' @param X Régresseurs | |
10 | #' @param Y Réponse | |
11 | #' @param tau Seuil pour accepter la convergence | |
12 | #' @param rank Vecteur des rangs possibles | |
4fed76cc | 13 | #' |
c280fe59 BA |
14 | #' @return A list ... |
15 | #' phi : parametre de moyenne renormalisé, calculé par l'EM | |
16 | #' LLF : log vraisemblance associé à cet échantillon, pour les valeurs estimées des paramètres | |
4fed76cc | 17 | #' |
4fed76cc | 18 | #' @export |
aa480ac1 | 19 | EMGrank <- function(Pi, Rho, mini, maxi, X, Y, tau, rank, fast=TRUE) |
4fed76cc | 20 | { |
aa480ac1 BA |
21 | if (!fast) |
22 | { | |
23 | # Function in R | |
a3105972 | 24 | return (.EMGrank_R(Pi, Rho, mini, maxi, X, Y, tau, rank)) |
aa480ac1 | 25 | } |
567a7c38 | 26 | |
aa480ac1 | 27 | # Function in C |
c280fe59 BA |
28 | n = nrow(X) #nombre d'echantillons |
29 | p = ncol(X) #nombre de covariables | |
30 | m = ncol(Y) #taille de Y (multivarié) | |
31 | k = length(Pi) #nombre de composantes dans le mélange | |
32 | .Call("EMGrank", | |
33 | Pi, Rho, mini, maxi, X, Y, tau, rank, | |
34 | phi=double(p*m*k), LLF=double(1), | |
35 | n, p, m, k, | |
36 | PACKAGE="valse") | |
4fed76cc | 37 | } |
aa480ac1 BA |
38 | |
39 | #helper to always have matrices as arg (TODO: put this elsewhere? improve?) | |
40 | # --> Yes, we should use by-columns storage everywhere... [later!] | |
41 | matricize <- function(X) | |
42 | { | |
43 | if (!is.matrix(X)) | |
44 | return (t(as.matrix(X))) | |
45 | return (X) | |
46 | } | |
47 | ||
48 | # R version - slow but easy to read | |
a3105972 | 49 | .EMGrank_R = function(Pi, Rho, mini, maxi, X, Y, tau, rank) |
aa480ac1 BA |
50 | { |
51 | #matrix dimensions | |
52 | n = dim(X)[1] | |
53 | p = dim(X)[2] | |
54 | m = dim(Rho)[2] | |
55 | k = dim(Rho)[3] | |
56 | ||
57 | #init outputs | |
58 | phi = array(0, dim=c(p,m,k)) | |
59 | Z = rep(1, n) | |
60 | LLF = 0 | |
61 | ||
62 | #local variables | |
63 | Phi = array(0, dim=c(p,m,k)) | |
64 | deltaPhi = c() | |
65 | sumDeltaPhi = 0. | |
66 | deltaPhiBufferSize = 20 | |
67 | ||
68 | #main loop | |
69 | ite = 1 | |
70 | while (ite<=mini || (ite<=maxi && sumDeltaPhi>tau)) | |
71 | { | |
43d76c49 | 72 | #M step: update for Beta ( and then phi) |
aa480ac1 BA |
73 | for(r in 1:k) |
74 | { | |
43d76c49 | 75 | Z_indice = seq_len(n)[Z==r] #indices where Z == r |
aa480ac1 BA |
76 | if (length(Z_indice) == 0) |
77 | next | |
78 | #U,S,V = SVD of (t(Xr)Xr)^{-1} * t(Xr) * Yr | |
0930b5d3 | 79 | s = svd( MASS::ginv(crossprod(matricize(X[Z_indice,]))) %*% |
aa480ac1 BA |
80 | crossprod(matricize(X[Z_indice,]),matricize(Y[Z_indice,])) ) |
81 | S = s$d | |
82 | #Set m-rank(r) singular values to zero, and recompose | |
83 | #best rank(r) approximation of the initial product | |
84 | if(rank[r] < length(S)) | |
85 | S[(rank[r]+1):length(S)] = 0 | |
86 | phi[,,r] = s$u %*% diag(S) %*% t(s$v) %*% Rho[,,r] | |
87 | } | |
88 | ||
43d76c49 | 89 | #Step E and computation of the loglikelihood |
aa480ac1 BA |
90 | sumLogLLF2 = 0 |
91 | for(i in seq_len(n)) | |
92 | { | |
93 | sumLLF1 = 0 | |
94 | maxLogGamIR = -Inf | |
95 | for (r in seq_len(k)) | |
96 | { | |
97 | dotProduct = tcrossprod(Y[i,]%*%Rho[,,r]-X[i,]%*%phi[,,r]) | |
98 | logGamIR = log(Pi[r]) + log(det(Rho[,,r])) - 0.5*dotProduct | |
99 | #Z[i] = index of max (gam[i,]) | |
100 | if(logGamIR > maxLogGamIR) | |
101 | { | |
102 | Z[i] = r | |
103 | maxLogGamIR = logGamIR | |
104 | } | |
105 | sumLLF1 = sumLLF1 + exp(logGamIR) / (2*pi)^(m/2) | |
106 | } | |
107 | sumLogLLF2 = sumLogLLF2 + log(sumLLF1) | |
108 | } | |
0930b5d3 | 109 | |
aa480ac1 BA |
110 | LLF = -1/n * sumLogLLF2 |
111 | ||
112 | #update distance parameter to check algorithm convergence (delta(phi, Phi)) | |
113 | deltaPhi = c( deltaPhi, max( (abs(phi-Phi)) / (1+abs(phi)) ) ) #TODO: explain? | |
114 | if (length(deltaPhi) > deltaPhiBufferSize) | |
115 | deltaPhi = deltaPhi[2:length(deltaPhi)] | |
116 | sumDeltaPhi = sum(abs(deltaPhi)) | |
117 | ||
118 | #update other local variables | |
119 | Phi = phi | |
120 | ite = ite+1 | |
121 | } | |
122 | return(list("phi"=phi, "LLF"=LLF)) | |
123 | } |