Commit | Line | Data |
---|---|---|
ffdf9447 | 1 | #' EMGLLF |
4fed76cc BA |
2 | #' |
3 | #' Description de EMGLLF | |
4 | #' | |
43d76c49 | 5 | #' @param phiInit an initialization for phi |
6 | #' @param rhoInit an initialization for rho | |
7 | #' @param piInit an initialization for pi | |
8 | #' @param gamInit initialization for the a posteriori probabilities | |
9 | #' @param mini integer, minimum number of iterations in the EM algorithm, by default = 10 | |
10 | #' @param maxi integer, maximum number of iterations in the EM algorithm, by default = 100 | |
11 | #' @param gamma integer for the power in the penaly, by default = 1 | |
12 | #' @param lambda regularization parameter in the Lasso estimation | |
13 | #' @param X matrix of covariates (of size n*p) | |
14 | #' @param Y matrix of responses (of size n*m) | |
15 | #' @param eps real, threshold to say the EM algorithm converges, by default = 1e-4 | |
4fed76cc | 16 | #' |
c280fe59 BA |
17 | #' @return A list ... phi,rho,pi,LLF,S,affec: |
18 | #' phi : parametre de moyenne renormalisé, calculé par l'EM | |
19 | #' rho : parametre de variance renormalisé, calculé par l'EM | |
20 | #' pi : parametre des proportions renormalisé, calculé par l'EM | |
21 | #' LLF : log vraisemblance associée à cet échantillon, pour les valeurs estimées des paramètres | |
22 | #' S : ... affec : ... | |
4fed76cc | 23 | #' |
4fed76cc | 24 | #' @export |
ffdf9447 | 25 | EMGLLF <- function(phiInit, rhoInit, piInit, gamInit, mini, maxi, gamma, lambda, |
a3cbbaea | 26 | X, Y, eps, fast) |
1b698c16 | 27 | { |
fb6e49cb | 28 | if (!fast) |
29 | { | |
30 | # Function in R | |
ffdf9447 BA |
31 | return(.EMGLLF_R(phiInit, rhoInit, piInit, gamInit, mini, maxi, gamma, lambda, |
32 | X, Y, eps)) | |
fb6e49cb | 33 | } |
1b698c16 | 34 | |
fb6e49cb | 35 | # Function in C |
ffdf9447 BA |
36 | n <- nrow(X) #nombre d'echantillons |
37 | p <- ncol(X) #nombre de covariables | |
38 | m <- ncol(Y) #taille de Y (multivarié) | |
39 | k <- length(piInit) #nombre de composantes dans le mélange | |
40 | .Call("EMGLLF", phiInit, rhoInit, piInit, gamInit, mini, maxi, gamma, lambda, | |
41 | X, Y, eps, phi = double(p * m * k), rho = double(m * m * k), pi = double(k), | |
42 | LLF = double(maxi), S = double(p * m * k), affec = integer(n), n, p, m, k, | |
43 | PACKAGE = "valse") | |
4fed76cc | 44 | } |
aa480ac1 BA |
45 | |
46 | # R version - slow but easy to read | |
ffdf9447 | 47 | .EMGLLF_R <- function(phiInit, rhoInit, piInit, gamInit, mini, maxi, gamma, lambda, |
c8baa022 | 48 | X, Y, eps) |
1b698c16 | 49 | { |
ea5860f1 BA |
50 | # Matrix dimensions |
51 | n <- nrow(X) | |
52 | p <- ncol(X) | |
53 | m <- ncol(Y) | |
54 | k <- length(piInit) | |
55 | ||
56 | # Adjustments required when p==1 or m==1 (var.sel. or output dim 1) | |
57 | if (p==1 || m==1) | |
58 | phiInit <- array(phiInit, dim=c(p,m,k)) | |
59 | if (m==1) | |
60 | rhoInit <- array(rhoInit, dim=c(m,m,k)) | |
1b698c16 | 61 | |
fb6e49cb | 62 | # Outputs |
ea5860f1 | 63 | phi <- phiInit |
ffdf9447 BA |
64 | rho <- rhoInit |
65 | pi <- piInit | |
66 | llh <- -Inf | |
67 | S <- array(0, dim = c(p, m, k)) | |
1b698c16 | 68 | |
fb6e49cb | 69 | # Algorithm variables |
ffdf9447 BA |
70 | gam <- gamInit |
71 | Gram2 <- array(0, dim = c(p, p, k)) | |
72 | ps2 <- array(0, dim = c(p, m, k)) | |
73 | X2 <- array(0, dim = c(n, p, k)) | |
74 | Y2 <- array(0, dim = c(n, m, k)) | |
75 | EPS <- 1e-15 | |
1b698c16 | 76 | |
fb6e49cb | 77 | for (ite in 1:maxi) |
78 | { | |
79 | # Remember last pi,rho,phi values for exit condition in the end of loop | |
ffdf9447 BA |
80 | Phi <- phi |
81 | Rho <- rho | |
82 | Pi <- pi | |
1b698c16 | 83 | |
fb6e49cb | 84 | # Computations associated to X and Y |
85 | for (r in 1:k) | |
86 | { | |
1b698c16 BA |
87 | for (mm in 1:m) |
88 | Y2[, mm, r] <- sqrt(gam[, r]) * Y[, mm] | |
89 | for (i in 1:n) | |
90 | X2[i, , r] <- sqrt(gam[i, r]) * X[i, ] | |
91 | for (mm in 1:m) | |
92 | ps2[, mm, r] <- crossprod(X2[, , r], Y2[, mm, r]) | |
fb6e49cb | 93 | for (j in 1:p) |
94 | { | |
1b698c16 BA |
95 | for (s in 1:p) |
96 | Gram2[j, s, r] <- crossprod(X2[, j, r], X2[, s, r]) | |
fb6e49cb | 97 | } |
98 | } | |
1b698c16 BA |
99 | |
100 | ## M step | |
101 | ||
fb6e49cb | 102 | # For pi |
ffdf9447 BA |
103 | b <- sapply(1:k, function(r) sum(abs(phi[, , r]))) |
104 | gam2 <- colSums(gam) | |
105 | a <- sum(gam %*% log(pi)) | |
1b698c16 | 106 | |
fb6e49cb | 107 | # While the proportions are nonpositive |
ffdf9447 BA |
108 | kk <- 0 |
109 | pi2AllPositive <- FALSE | |
fb6e49cb | 110 | while (!pi2AllPositive) |
111 | { | |
ffdf9447 BA |
112 | pi2 <- pi + 0.1^kk * ((1/n) * gam2 - pi) |
113 | pi2AllPositive <- all(pi2 >= 0) | |
114 | kk <- kk + 1 | |
fb6e49cb | 115 | } |
1b698c16 | 116 | |
fb6e49cb | 117 | # t(m) is the largest value in the grid O.1^k such that it is nonincreasing |
1b698c16 | 118 | while (kk < 1000 && -a/n + lambda * sum(pi^gamma * b) < |
a3cbbaea BA |
119 | # na.rm=TRUE to handle 0*log(0) |
120 | -sum(gam2 * log(pi2), na.rm=TRUE)/n + lambda * sum(pi2^gamma * b)) | |
1b698c16 | 121 | { |
ffdf9447 BA |
122 | pi2 <- pi + 0.1^kk * (1/n * gam2 - pi) |
123 | kk <- kk + 1 | |
fb6e49cb | 124 | } |
ffdf9447 BA |
125 | t <- 0.1^kk |
126 | pi <- (pi + t * (pi2 - pi))/sum(pi + t * (pi2 - pi)) | |
1b698c16 | 127 | |
ffdf9447 | 128 | # For phi and rho |
fb6e49cb | 129 | for (r in 1:k) |
130 | { | |
131 | for (mm in 1:m) | |
132 | { | |
ffdf9447 | 133 | ps <- 0 |
1b698c16 BA |
134 | for (i in 1:n) |
135 | ps <- ps + Y2[i, mm, r] * sum(X2[i, , r] * phi[, mm, r]) | |
ffdf9447 BA |
136 | nY2 <- sum(Y2[, mm, r]^2) |
137 | rho[mm, mm, r] <- (ps + sqrt(ps^2 + 4 * nY2 * gam2[r]))/(2 * nY2) | |
fb6e49cb | 138 | } |
139 | } | |
1b698c16 | 140 | |
fb6e49cb | 141 | for (r in 1:k) |
142 | { | |
143 | for (j in 1:p) | |
144 | { | |
145 | for (mm in 1:m) | |
146 | { | |
a3cbbaea BA |
147 | S[j, mm, r] <- -rho[mm, mm, r] * ps2[j, mm, r] + |
148 | sum(phi[-j, mm, r] * Gram2[j, -j, r]) | |
1b698c16 BA |
149 | if (abs(S[j, mm, r]) <= n * lambda * (pi[r]^gamma)) { |
150 | phi[j, mm, r] <- 0 | |
151 | } else if (S[j, mm, r] > n * lambda * (pi[r]^gamma)) { | |
152 | phi[j, mm, r] <- (n * lambda * (pi[r]^gamma) - S[j, mm, r])/Gram2[j, j, r] | |
153 | } else { | |
154 | phi[j, mm, r] <- -(n * lambda * (pi[r]^gamma) + S[j, mm, r])/Gram2[j, j, r] | |
f7e157cd | 155 | } |
fb6e49cb | 156 | } |
157 | } | |
158 | } | |
1b698c16 | 159 | |
c8baa022 | 160 | ## E step |
1b698c16 | 161 | |
fb6e49cb | 162 | # Precompute det(rho[,,r]) for r in 1...k |
ea5860f1 | 163 | detRho <- sapply(1:k, function(r) gdet(rho[, , r])) |
a3cbbaea | 164 | sumLogLLH <- 0 |
fb6e49cb | 165 | for (i in 1:n) |
166 | { | |
a3cbbaea BA |
167 | # Update gam[,]; use log to avoid numerical problems |
168 | logGam <- sapply(1:k, function(r) { | |
169 | log(pi[r]) + log(detRho[r]) - 0.5 * | |
170 | sum((Y[i, ] %*% rho[, , r] - X[i, ] %*% phi[, , r])^2) | |
171 | }) | |
172 | ||
173 | logGam <- logGam - max(logGam) #adjust without changing proportions | |
174 | gam[i, ] <- exp(logGam) | |
175 | norm_fact <- sum(gam[i, ]) | |
176 | gam[i, ] <- gam[i, ] / norm_fact | |
177 | sumLogLLH <- sumLogLLH + log(norm_fact) - log((2 * base::pi)^(m/2)) | |
fb6e49cb | 178 | } |
a3cbbaea | 179 | |
ffdf9447 BA |
180 | sumPen <- sum(pi^gamma * b) |
181 | last_llh <- llh | |
182 | llh <- -sumLogLLH/n + lambda * sumPen | |
183 | dist <- ifelse(ite == 1, llh, (llh - last_llh)/(1 + abs(llh))) | |
184 | Dist1 <- max((abs(phi - Phi))/(1 + abs(phi))) | |
185 | Dist2 <- max((abs(rho - Rho))/(1 + abs(rho))) | |
186 | Dist3 <- max((abs(pi - Pi))/(1 + abs(Pi))) | |
187 | dist2 <- max(Dist1, Dist2, Dist3) | |
1b698c16 | 188 | |
c8baa022 | 189 | if (ite >= mini && (dist >= eps || dist2 >= sqrt(eps))) |
fb6e49cb | 190 | break |
191 | } | |
1b698c16 | 192 | |
ffdf9447 | 193 | list(phi = phi, rho = rho, pi = pi, llh = llh, S = S) |
aa480ac1 | 194 | } |