| 1 | % Generated by roxygen2 (4.0.2): do not edit by hand |
| 2 | \name{findSyncVarRegions} |
| 3 | \alias{findSyncVarRegions} |
| 4 | \title{Direct clustering from a neighborhoods graph, or get regions from (Poisson) |
| 5 | distribution parameters optimization, using convex relaxation.} |
| 6 | \usage{ |
| 7 | findSyncVarRegions(method, M, k, alpha, gmode, K, dtype, cmeth, pcoef = 1, |
| 8 | h = 0.001, eps = 0.001, maxit = 1000, showLL = TRUE, disp = TRUE) |
| 9 | } |
| 10 | \arguments{ |
| 11 | \item{method}{Global method: "direct" or "convex"} |
| 12 | |
| 13 | \item{M}{Matrix of observations in rows, the two last columns |
| 14 | corresponding to geographic coordinates; |
| 15 | set to NULL to use our initial dataset (625 rows / 9 years)} |
| 16 | |
| 17 | \item{k}{Number of neighbors} |
| 18 | |
| 19 | \item{alpha}{Weight parameter for intra-neighborhoods distance computations; |
| 20 | 0 = take only geographic coordinates into account; |
| 21 | 1 = take only observations over the years into account; |
| 22 | in-between : several levels of compromise; |
| 23 | -1 or any negative value : use a heuristic to choose alpha.} |
| 24 | |
| 25 | \item{gmode}{Neighborhood type. 0 = reduced [mutual] kNN; 1 = augmented kNN (symmetric); |
| 26 | 2 = normal kNN; 3 = one NN in each quadrant; (NON-symmetric). |
| 27 | NOTE: gmode==3 automatically sets k==4 (at most!)} |
| 28 | |
| 29 | \item{K}{Number of clusters} |
| 30 | |
| 31 | \item{dtype}{Distance type, in {"simple","spath","ectd"}. |
| 32 | NOTE: better avoid "simple" if gmode>=2} |
| 33 | |
| 34 | \item{cmeth}{Clustering method, in {"KM","HC","spec"} for k-means (distances based) |
| 35 | or hierarchical clustering, or spectral clustering (only if gmode>=2)} |
| 36 | |
| 37 | \item{pcoef}{Penalty value for convex optimization [default: 1.0]} |
| 38 | |
| 39 | \item{h}{Step in the min LL algorithm [default: 1e-3]} |
| 40 | |
| 41 | \item{eps}{Threshold to stop min.LL iterations [default: 1e-3]} |
| 42 | |
| 43 | \item{maxit}{Maximum number of iterations in the min LL algo [default: 1e3]} |
| 44 | |
| 45 | \item{showLL}{Print trace of log-likelihood evolution [default: true]} |
| 46 | |
| 47 | \item{disp}{True [default] for interactive display (otherwise nothing gets plotted)} |
| 48 | } |
| 49 | \value{ |
| 50 | list with the following entries. M: data matrix in input; NI: computed neighborhoods; |
| 51 | dists: computed distances matrix; clusts: partition into K clusters, as an integer vector; |
| 52 | cxpar: parameters obtained after convex optimization (if applicable) |
| 53 | } |
| 54 | \description{ |
| 55 | Direct clustering from a neighborhoods graph, or get regions from (Poisson) |
| 56 | distribution parameters optimization, using convex relaxation. |
| 57 | } |
| 58 | \examples{ |
| 59 | cvr = findSyncVarRegions("convex",M=NULL,k=10,alpha=0.1,gmode=1,K=5,dtype="spath",cmeth="HC") |
| 60 | drawMapWithSitez(cvr$M, cvr$clusters) |
| 61 | drawNeighboroodGraph(cvr$M, cvr$NI) |
| 62 | } |
| 63 | |