3 #' Construct the data-driven grid for the regularization parameters used for the Lasso estimator
5 #' @param phiInit value for phi
6 #' @param rhoInit\tvalue for rho
7 #' @param piInit\tvalue for pi
8 #' @param gamInit value for gamma
9 #' @param X matrix of covariates (of size n*p)
10 #' @param Y matrix of responses (of size n*m)
11 #' @param gamma power of weights in the penalty
12 #' @param mini minimum number of iterations in EM algorithm
13 #' @param maxi maximum number of iterations in EM algorithm
14 #' @param tau threshold to stop EM algorithm
16 #' @return the grid of regularization parameters
19 computeGridLambda <- function(phiInit, rhoInit, piInit, gamInit, X, Y, gamma, mini,
20 maxi, tau, fast = TRUE)
27 list_EMG <- EMGLLF(phiInit, rhoInit, piInit, gamInit, mini, maxi, gamma, lambda = 0,
29 grid <- array(0, dim = c(p, m, k))
33 grid[i, j, ] <- abs(list_EMG$S[i, j, ])/(n * list_EMG$pi^gamma)