Commit | Line | Data |
---|---|---|
2279a641 BA |
1 | #' constructionModelesLassoRank |
2 | #' | |
3 | #' TODO: description | |
4 | #' | |
5 | #' @param ... | |
6 | #' | |
7 | #' @return ... | |
8 | #' | |
9 | #' export | |
10 | constructionModelesLassoRank = function(pi, rho, mini, maxi, X, Y, tau, A1, rangmin, | |
11 | rangmax, ncores, verbose=FALSE) | |
ef67d338 | 12 | { |
3f145e9a BG |
13 | n = dim(X)[1] |
14 | p = dim(X)[2] | |
15 | m = dim(rho)[2] | |
16 | k = dim(rho)[3] | |
17 | L = dim(A1)[2] | |
ef67d338 BA |
18 | |
19 | # On cherche les rangs possiblement intéressants | |
3f145e9a BG |
20 | deltaRank = rangmax - rangmin + 1 |
21 | Size = deltaRank^k | |
ef67d338 | 22 | Rank = matrix(0, nrow=Size, ncol=k) |
0eb161e3 | 23 | for (r in 1:k) |
ef67d338 BA |
24 | { |
25 | # On veut le tableau de toutes les combinaisons de rangs possibles | |
26 | # Dans la première colonne : on répète (rangmax-rangmin)^(k-1) chaque chiffre : | |
27 | # ça remplit la colonne | |
28 | # Dans la deuxieme : on répète (rangmax-rangmin)^(k-2) chaque chiffre, | |
29 | # et on fait ça (rangmax-rangmin)^2 fois | |
30 | # ... | |
31 | # Dans la dernière, on répète chaque chiffre une fois, | |
32 | # et on fait ça (rangmin-rangmax)^(k-1) fois. | |
33 | Rank[,r] = rangmin + rep(0:(deltaRank-1), deltaRank^(r-1), each=deltaRank^(k-r)) | |
34 | } | |
35 | ||
0eb161e3 BA |
36 | if (ncores > 1) |
37 | { | |
38 | cl = parallel::makeCluster(ncores) | |
39 | parallel::clusterExport( cl, envir=environment(), | |
40 | varlist=c("A1","Size","Pi","Rho","mini","maxi","X","Y","tau", | |
41 | "Rank","m","phi","ncores","verbose") ) | |
42 | } | |
2279a641 | 43 | |
0eb161e3 | 44 | computeAtLambda <- function(lambdaIndex) |
ef67d338 | 45 | { |
0eb161e3 BA |
46 | if (ncores > 1) |
47 | require("valse") #workers start with an empty environment | |
48 | ||
ef67d338 BA |
49 | # on ne garde que les colonnes actives |
50 | # 'active' sera l'ensemble des variables informatives | |
51 | active = A1[,lambdaIndex] | |
52 | active = active[-(active==0)] | |
0eb161e3 BA |
53 | phi = array(0, dim=c(p,m,k,Size)) |
54 | llh = matrix(0, Size, 2) #log-likelihood | |
ef67d338 BA |
55 | if (length(active) > 0) |
56 | { | |
57 | for (j in 1:Size) | |
58 | { | |
59 | res = EMGrank(Pi[,lambdaIndex], Rho[,,,lambdaIndex], mini, maxi, | |
60 | X[,active], Y, tau, Rank[j,]) | |
0eb161e3 BA |
61 | llh = rbind(llh, |
62 | c( res$LLF, sum(Rank[j,] * (length(active)- Rank[j,] + m)) ) ) | |
63 | phi[active,,,] = rbind(phi[active,,,], res$phi) | |
3f145e9a BG |
64 | } |
65 | } | |
0eb161e3 BA |
66 | list("llh"=llh, "phi"=phi) |
67 | } | |
68 | ||
69 | #Pour chaque lambda de la grille, on calcule les coefficients | |
70 | out = | |
71 | if (ncores > 1) | |
72 | parLapply(cl, seq_along(glambda), computeAtLambda) | |
73 | else | |
74 | lapply(seq_along(glambda), computeAtLambda) | |
75 | ||
76 | if (ncores > 1) | |
77 | parallel::stopCluster(cl) | |
78 | ||
79 | # TODO: this is a bit ugly. Better use bigmemory and fill llh/phi in-place | |
80 | # (but this also adds a dependency...) | |
81 | llh <- do.call( rbind, lapply(out, function(model) model$llh) ) | |
82 | phi <- do.call( rbind, lapply(out, function(model) model$phi) ) | |
83 | list("llh"=llh, "phi"=phi) | |
9ade3f1b | 84 | } |