Commit | Line | Data |
---|---|---|
40f12a2f BA |
1 | #' computeWerDists |
2 | #' | |
3 | #' Compute the WER distances between the synchrones curves (in columns), which are | |
4 | #' returned (e.g.) by \code{computeSynchrones()} | |
5 | #' | |
3c5a4b08 | 6 | #' @param indices Range of series indices to cluster |
40f12a2f | 7 | #' @inheritParams claws |
3c5a4b08 | 8 | #' @inheritParams computeSynchrones |
40f12a2f | 9 | #' |
3c5a4b08 | 10 | #' @return A distances matrix of size K x K where K == length(indices) |
40f12a2f BA |
11 | #' |
12 | #' @export | |
3c5a4b08 BA |
13 | computeWerDists = function(indices, getSeries, nb_series_per_chunk, nvoice, nbytes, endian, |
14 | ncores_clust=1, verbose=FALSE, parll=TRUE) | |
40f12a2f | 15 | { |
3c5a4b08 BA |
16 | n <- length(indices) |
17 | L <- length(getSeries(1)) #TODO: not very nice way to get L | |
40f12a2f | 18 | noctave = ceiling(log2(L)) #min power of 2 to cover serie range |
3c5a4b08 BA |
19 | # Since a CWT contains noctave*nvoice complex series, we deduce the number of CWT to |
20 | # retrieve/put in one chunk. | |
21 | nb_cwt_per_chunk = max(1, floor(nb_series_per_chunk / (nvoice*noctave*2))) | |
40f12a2f | 22 | |
3c5a4b08 | 23 | # Initialize result as a square big.matrix of size 'number of medoids' |
40f12a2f BA |
24 | Xwer_dist <- bigmemory::big.matrix(nrow=n, ncol=n, type="double") |
25 | ||
26 | # Generate n(n-1)/2 pairs for WER distances computations | |
27 | pairs = list() | |
28 | V = seq_len(n) | |
29 | for (i in 1:n) | |
30 | { | |
31 | V = V[-1] | |
32 | pairs = c(pairs, lapply(V, function(v) c(i,v))) | |
33 | } | |
34 | ||
35 | cwt_file = ".cwt.bin" | |
3c5a4b08 | 36 | # Compute the getSeries(indices) CWT, and store the results in the binary file |
40f12a2f BA |
37 | computeSaveCWT = function(indices) |
38 | { | |
39 | if (parll) | |
40 | { | |
41 | require("bigmemory", quietly=TRUE) | |
42 | require("Rwave", quietly=TRUE) | |
43 | require("epclust", quietly=TRUE) | |
40f12a2f BA |
44 | } |
45 | ||
46 | # Obtain CWT as big vectors of real part + imaginary part (concatenate) | |
47 | ts_cwt <- sapply(indices, function(i) { | |
3c5a4b08 | 48 | ts <- scale(ts(getSeries(i)), center=TRUE, scale=FALSE) |
40f12a2f BA |
49 | ts_cwt <- Rwave::cwt(ts, noctave, nvoice, w0=2*pi, twoD=TRUE, plot=FALSE) |
50 | c( as.double(Re(ts_cwt)),as.double(Im(ts_cwt)) ) | |
51 | }) | |
52 | ||
53 | # Serialization | |
3c5a4b08 | 54 | binarize(ts_cwt, cwt_file, nb_cwt_per_chunk, ",", nbytes, endian) |
40f12a2f BA |
55 | } |
56 | ||
57 | if (parll) | |
58 | { | |
59 | cl = parallel::makeCluster(ncores_clust) | |
40f12a2f | 60 | Xwer_dist_desc <- bigmemory::describe(Xwer_dist) |
3c5a4b08 BA |
61 | parallel::clusterExport(cl, varlist=c("parll","nb_cwt_per_chunk","L", |
62 | "Xwer_dist_desc","noctave","nvoice","getCWT"), envir=environment()) | |
40f12a2f BA |
63 | } |
64 | ||
65 | if (verbose) | |
66 | cat(paste("--- Precompute and serialize synchrones CWT\n", sep="")) | |
67 | ||
68 | ignored <- | |
69 | if (parll) | |
70 | parallel::parLapply(cl, 1:n, computeSaveCWT) | |
71 | else | |
72 | lapply(1:n, computeSaveCWT) | |
73 | ||
74 | # Function to retrieve a synchrone CWT from (binary) file | |
3c5a4b08 | 75 | getCWT = function(index, L) |
40f12a2f BA |
76 | { |
77 | flat_cwt <- getDataInFile(index, cwt_file, nbytes, endian) | |
78 | cwt_length = length(flat_cwt) / 2 | |
79 | re_part = as.matrix(flat_cwt[1:cwt_length], nrow=L) | |
80 | im_part = as.matrix(flat_cwt[(cwt_length+1):(2*cwt_length)], nrow=L) | |
81 | re_part + 1i * im_part | |
82 | } | |
83 | ||
84 | ||
85 | ||
86 | ||
87 | #TODO: better repartition here, | |
40f12a2f BA |
88 | |
89 | ||
90 | ||
91 | # Compute distance between columns i and j in synchrones | |
92 | computeDistanceIJ = function(pair) | |
93 | { | |
94 | if (parll) | |
95 | { | |
96 | # parallel workers start with an empty environment | |
97 | require("bigmemory", quietly=TRUE) | |
98 | require("epclust", quietly=TRUE) | |
40f12a2f BA |
99 | Xwer_dist <- bigmemory::attach.big.matrix(Xwer_dist_desc) |
100 | } | |
101 | ||
102 | i = pair[1] ; j = pair[2] | |
103 | if (verbose && j==i+1 && !parll) | |
104 | cat(paste(" Distances (",i,",",j,"), (",i,",",j+1,") ...\n", sep="")) | |
105 | ||
106 | # Compute CWT of columns i and j in synchrones | |
3c5a4b08 BA |
107 | cwt_i <- getCWT(i, L) |
108 | cwt_j <- getCWT(j, L) | |
40f12a2f BA |
109 | |
110 | # Compute the ratio of integrals formula 5.6 for WER^2 | |
111 | # in https://arxiv.org/abs/1101.4744v2 ยง5.3 | |
112 | num <- filterMA(Mod(cwt_i * Conj(cwt_j))) | |
113 | WX <- filterMA(Mod(cwt_i * Conj(cwt_i))) | |
114 | WY <- filterMA(Mod(cwt_j * Conj(cwt_j))) | |
115 | wer2 <- sum(colSums(num)^2) / sum(colSums(WX) * colSums(WY)) | |
116 | ||
117 | Xwer_dist[i,j] <- sqrt(L * ncol(cwt_i) * (1 - wer2)) | |
118 | Xwer_dist[j,i] <- Xwer_dist[i,j] | |
119 | Xwer_dist[i,i] <- 0. | |
120 | } | |
121 | ||
122 | if (verbose) | |
123 | cat(paste("--- Compute WER distances\n", sep="")) | |
124 | ||
125 | ignored <- | |
126 | if (parll) | |
127 | parallel::parLapply(cl, pairs, computeDistanceIJ) | |
128 | else | |
129 | lapply(pairs, computeDistanceIJ) | |
130 | ||
131 | if (parll) | |
132 | parallel::stopCluster(cl) | |
133 | ||
134 | unlink(cwt_file) | |
135 | ||
136 | Xwer_dist[n,n] = 0. | |
137 | Xwer_dist[,] #~small matrix K1 x K1 | |
138 | } |