+EMGLLF = function(phiInit,rhoInit,piInit,gamInit,mini,maxi,gamma,lambda,X,Y,tau){
+ #matrix dimensions
+ n = dim(X)[1]
+ p = dim[phiInit][1]
+ m = dim[phiInit][2]
+ k = dim[phiInit][3]
+
+ #init outputs
+ phi = phiInit
+ rho = rhoInit
+ Pi = piInit
+ LLF = rep(0, maxi)
+ S = array(0, dim=c(p,m,k))
+
+
+ gam = gamInit
+ Gram2 = array(0, dim=c(p,p,k))
+ ps2 = array(0, dim=c(p,m,k))
+ b = rep(0, k)
+ pen = matrix(0, maxi, k)
+ X2 = array(0, dim=c(n,p,k))
+ Y2 = array(0, dim=c(p,m,k))
+ dist = 0
+ dist2 = 0
+ ite = 1
+ Pi2 = rep(0, k)
+ ps = matrix(0, m,k)
+ nY2 = matrix(0, m,k)
+ ps1 = array(0, dim=c(n,m,k))
+ nY21 = array(0, dim=c(n,m,k))
+ Gam = matrix(0, n,k)
+ EPS = 1E-15
+
+ while(ite <= mini || (ite<= maxi && (dist>= tau || dist2 >= sqrt(tau)))){
+ Phi = phi
+ Rho = rho
+ PI = Pi
+ #calcul associé à Y et X
+ for(r in 1:k){
+ for(mm in 1:m){
+ Y2[,mm,r] = sqrt(gam[,r]) .* Y[,mm]
+ }
+ for(i in 1:n){
+ X2[i,,r] = X[i,] .* sqrt(gam[i,r])
+ }
+ for(mm in 1:m){
+ ps2[,mm,r] = crossprod(X2[,,r],Y2[,mm,r])
+ }
+ for(j in 1:p){
+ for(s in 1:p){
+ Gram2[j,s,r] = tcrossprod(X2[,j,r], X2[,s,r])
+ }
+ }
+ }
+
+ ##########
+ #Etape M #
+ ##########
+
+ #pour pi
+ for(r in 1:k){
+ b[r] = sum(sum(abs(phi[,,r])))
+ }
+ gam2 = sum(gam[1,]) #BIG DOUTE
+ a = sum(gam*t(log(Pi)))
+
+ #tant que les props sont negatives
+ kk = 0
+ pi2AllPositive = FALSE
+ while(pi2AllPositive == FALSE){
+ pi2 = pi + 0.1^kk * ((1/n)*gam2 - pi)
+ pi2AllPositive = TRUE
+ for(r in 1:k){
+ if(pi2[r] < 0){
+ pi2AllPositive = false;
+ break
+ }
+ }
+ kk = kk+1
+ }
+
+ #t[m]la plus grande valeur dans la grille O.1^k tel que ce soit
+ #décroissante ou constante
+ while((-1/n*a+lambda*((pi.^gamma)*b))<(-1/n*gam2*t(log(pi2))+lambda.*(pi2.^gamma)*b) && kk<1000){
+ pi2 = pi+0.1^kk*(1/n*gam2-pi)
+ kk = kk+1
+ }
+ t = 0.1^(kk)
+ pi = (pi+t*(pi2-pi)) / sum(pi+t*(pi2-pi))
+
+ #Pour phi et rho
+ for(r in 1:k){
+ for(mm in 1:m){
+ for(i in 1:n){
+ ps1[i,mm,r] = Y2[i,mm,r] * dot(X2(i,:,r), phi(:,mm,r))
+ nY21[i,mm,r] = (Y2[i,mm,r])^2
+ }
+ ps[mm,r] = sum(ps1(:,mm,r));
+ nY2[mm,r] = sum(nY21(:,mm,r));
+ rho[mm,mm,r] = ((ps[mm,r]+sqrt(ps[mm,r]^2+4*nY2[mm,r]*(gam2[r])))/(2*nY2[mm,r]))
+ }
+ }
+ for(r in 1:k){
+ for(j in 1:p){
+ for(mm in 1:m){
+ S[j,mm,r] = -rho[mm,mm,r]*ps2[j,mm,r] + dot(phi[1:j-1,mm,r],Gram2[j,1:j-1,r]) + dot(phi[j+1:p,mm,r],Gram2[j,j+1:p,r])
+ if(abs(S(j,mm,r)) <= n*lambda*(pi(r)^gamma))
+ phi[j,mm,r]=0
+ else{
+ if(S[j,mm,r]> n*lambda*(Pi[r]^gamma))
+ phi[j,mm,r] = (n*lambda*(Pi[r]^gamma)-S[j,mm,r])/Gram2[j,j,r]
+ else
+ phi[j,mm,r] = -(n*lambda*(Pi[r]^gamma)+S[j,mm,r])/Gram2[j,j,r]
+ }
+ }
+ }
+ }
+
+ ##########
+ #Etape E #
+ ##########
+ sumLogLLF2 = 0
+ for(i in 1:n){
+ #precompute dot products to numerically adjust their values
+ dotProducts = rep(0,k)
+ for(r in 1:k){
+ dotProducts[r] = tcrossprod(Y[i,]%*%rho[,,r]-X[i,]%*%phi[,,r])
+ }
+ shift = 0.5*min(dotProducts)
+
+ #compute Gam(:,:) using shift determined above
+ sumLLF1 = 0.0;
+ for(r in 1:k){
+ Gam[i,r] = Pi[r]*det(rho[,,r])*exp(-0.5*dotProducts[r] + shift)
+ sumLLF1 = sumLLF1 + Gam[i,r]/(2*pi)^(m/2)
+ }
+ sumLogLLF2 = sumLogLLF2 + log(sumLLF1)
+ sumGamI = sum(Gam[i,])
+ if(sumGamI > EPS)
+ gam[i,] = Gam[i,] / sumGamI
+ else
+ gam[i,] = rep(0,k)
+ }
+
+
+ sumPen = 0
+ for(r in 1:k){
+ sumPen = sumPen + Pi[r].^gamma^b[r]
+ }
+ LLF[ite] = -(1/n)*sumLogLLF2 + lambda*sumPen
+
+ if(ite == 1)
+ dist = LLF[ite]
+ else
+ dist = (LLF[ite]-LLF[ite-1])/(1+abs(LLF[ite]))
+
+ Dist1=max(max(max((abs(phi-Phi))./(1+abs(phi)))))
+ Dist2=max(max(max((abs(rho-Rho))./(1+abs(rho)))))
+ Dist3=max(max((abs(Pi-PI))./(1+abs(PI))))
+ dist2=max([Dist1,Dist2,Dist3])
+
+ ite=ite+1
+ }
+
+ Pi = transpose(Pi)
+ return(list(phi=phi, rho=rho, Pi=Pi, LLF=LLF, S=S))
+}
\ No newline at end of file