3 #' @param X matrix of covariates (of size n*p)
4 #' @param Y matrix of responses (of size n*m)
5 #' @param procedure among 'LassoMLE' or 'LassoRank'
6 #' @param selecMod method to select a model among 'SlopeHeuristic', 'BIC', 'AIC'
7 #' @param gamma integer for the power in the penaly, by default = 1
8 #' @param mini integer, minimum number of iterations in the EM algorithm, by default = 10
9 #' @param maxi integer, maximum number of iterations in the EM algorithm, by default = 100
10 #' @param eps real, threshold to say the EM algorithm converges, by default = 1e-4
11 #' @param kmin integer, minimum number of clusters, by default = 2
12 #' @param kmax integer, maximum number of clusters, by default = 10
13 #' @param rang.min integer, minimum rank in the low rank procedure, by default = 1
14 #' @param rang.max integer, maximum rank in the
15 #' @return a list with estimators of parameters
17 #-----------------------------------------------------------------------
18 valse = function(X,Y,procedure = 'LassoMLE',selecMod = 'BIC',gamma = 1,mini = 10,
19 maxi = 100,eps = 1e-4,kmin = 2,kmax = 5,
20 rang.min = 1,rang.max = 10) {
21 ##################################
22 #core workflow: compute all models
23 ##################################
29 tableauRecap = array(, dim=c(1000,4))
31 print("main loop: over all k and all lambda")
35 print("Parameters initialization")
36 #smallEM initializes parameters by k-means and regression model in each component,
37 #doing this 20 times, and keeping the values maximizing the likelihood after 10
38 #iterations of the EM algorithm.
39 init = initSmallEM(k, X, Y)
40 phiInit <<- init$phiInit
41 rhoInit <<- init$rhoInit
42 piInit <<- init$piInit
43 gamInit <<- init$gamInit
44 source('~/valse/pkg/R/gridLambda.R')
45 gridLambda <<- gridLambda(phiInit, rhoInit, piInit, gamInit, X, Y, gamma, mini, maxi, eps)
47 print("Compute relevant parameters")
48 #select variables according to each regularization parameter
49 #from the grid: A1 corresponding to selected variables, and
50 #A2 corresponding to unselected variables.
52 params = selectiontotale(phiInit,rhoInit,piInit,gamInit,mini,maxi,gamma,gridLambda[seq(1,length(gridLambda), by=3)],X,Y,1e-8,eps)
53 params2 = selectVariables(phiInit,rhoInit,piInit,gamInit,mini,maxi,gamma,gridLambda[seq(1,length(gridLambda), by=3)],X,Y,1e-8,eps)
54 ## etrange : params et params 2 sont différents ...
56 selected <<- params$selected
60 if (procedure == 'LassoMLE') {
61 print('run the procedure Lasso-MLE')
62 #compute parameter estimations, with the Maximum Likelihood
63 #Estimator, restricted on selected variables.
64 model[[k]] = constructionModelesLassoMLE(phiInit, rhoInit,piInit,gamInit,mini,maxi,gamma,X,Y,thresh,eps,selected)
65 LLH = unlist(model[[k]]$llh)[seq(1,2*length(model[[k]]),2)]
66 D = unlist(model[[k]]$llh)[seq(1,2*length(model[[k]]),2)+1]
68 print('run the procedure Lasso-Rank')
69 #compute parameter estimations, with the Low Rank
70 #Estimator, restricted on selected variables.
71 model = constructionModelesLassoRank(Pi, Rho, mini, maxi, X, Y, eps,
72 A1, rank.min, rank.max)
74 ################################################
76 phi = runProcedure2()$phi
78 if (dim(Phi2)[1] == 0)
83 Phi <<- array(0, dim = c(p, m, kmax, dim(Phi2)[4] + dim(phi)[4]))
84 Phi[, , 1:(dim(Phi2)[3]), 1:(dim(Phi2)[4])] <<- Phi2
85 Phi[, , 1:k,-(1:(dim(Phi2)[4]))] <<- phi
88 tableauRecap[(cpt+1):(cpt+length(model[[k]])), ] = matrix(c(LLH, D, rep(k, length(model[[k]])), 1:length(model[[k]])), ncol = 4)
89 cpt = cpt+length(model[[k]])
91 print('Model selection')
93 tableauRecap = array(dim = c())
94 if (selecMod == 'SlopeHeuristic') {
96 } else if (selecMod == 'BIC') {
97 BIC = -2*tableauRecap[,1]+log(n)*tableauRecap[,2]
98 indMinBIC = which.min(BIC)
99 return(model[[tableauRecap[indMinBIC,3]]][[tableauRecap[indMinBIC,4]]])
100 } else if (selecMod == 'AIC') {