948167b241cb806a8db101c208dba577042a9f3f
[morpheus.git] / pkg / R / optimParams.R
1 #' Wrapper function for OptimParams class
2 #'
3 #' @param K Number of populations.
4 #' @param link The link type, 'logit' or 'probit'.
5 #' @param X Data matrix of covariables
6 #' @param Y Output as a binary vector
7 #'
8 #' @return An object 'op' of class OptimParams, initialized so that \code{op$run(x0)}
9 #' outputs the list of optimized parameters
10 #' \itemize{
11 #' \item p: proportions, size K
12 #' \item β: regression matrix, size dxK
13 #' \item b: intercepts, size K
14 #' }
15 #' x0 is a vector containing respectively the K-1 first elements of p, then β by
16 #' columns, and finally b: \code{x0 = c(p[1:(K-1)],as.double(β),b)}.
17 #'
18 #' @seealso \code{multiRun} to estimate statistics based on β, and
19 #' \code{generateSampleIO} for I/O random generation.
20 #'
21 #' @examples
22 #' # Optimize parameters from estimated μ
23 #' io = generateSampleIO(10000, 1/2, matrix(c(1,-2,3,1),ncol=2), c(0,0), "logit")
24 #' μ = computeMu(io$X, io$Y, list(K=2))
25 #' o <- optimParams(io$X, io$Y, 2, "logit")
26 #' x0 <- list(p=1/2, β=μ, b=c(0,0))
27 #' par0 <- o$run(x0)
28 #' # Compare with another starting point
29 #' x1 <- list(p=1/2, β=2*μ, b=c(0,0))
30 #' par1 <- o$run(x1)
31 #' o$f( o$linArgs(par0) )
32 #' o$f( o$linArgs(par1) )
33 #' @export
34 optimParams = function(X, Y, K, link=c("logit","probit"))
35 {
36 # Check arguments
37 if (!is.matrix(X) || any(is.na(X)))
38 stop("X: numeric matrix, no NAs")
39 if (!is.numeric(Y) || any(is.na(Y)) || any(Y!=0 | Y!=1))
40 stop("Y: binary vector with 0 and 1 only")
41 link <- match.arg(link)
42 if (!is.numeric(K) || K!=floor(K) || K < 2)
43 stop("K: integer >= 2")
44
45 # Build and return optimization algorithm object
46 methods::new("OptimParams", "li"=link, "X"=X,
47 "Y"=as.integer(Y), "K"=as.integer(K))
48 }
49
50 #' Encapsulated optimization for p (proportions), β and b (regression parameters)
51 #'
52 #' Optimize the parameters of a mixture of logistic regressions model, possibly using
53 #' \code{mu <- computeMu(...)} as a partial starting point.
54 #'
55 #' @field li Link function, 'logit' or 'probit'
56 #' @field X Data matrix of covariables
57 #' @field Y Output as a binary vector
58 #' @field K Number of populations
59 #' @field d Number of dimensions
60 #' @field W Weights matrix (iteratively refined)
61 #'
62 setRefClass(
63 Class = "OptimParams",
64
65 fields = list(
66 # Inputs
67 li = "character", #link function
68 X = "matrix",
69 Y = "numeric",
70 M1 = "numeric",
71 M2 = "numeric", #M2 easier to process as a vector
72 M3 = "numeric", #same for M3
73 # Dimensions
74 K = "integer",
75 n = "integer",
76 d = "integer",
77 # Weights matrix (generalized least square)
78 W = "matrix"
79 ),
80
81 methods = list(
82 initialize = function(...)
83 {
84 "Check args and initialize K, d, W"
85
86 callSuper(...)
87 if (!hasArg("X") || !hasArg("Y") || !hasArg("K") || !hasArg("li"))
88 stop("Missing arguments")
89
90 # Precompute empirical moments
91 M <- computeMoments(optargs$X,optargs$Y)
92 M1 <<- as.double(M[[1]])
93 M2 <<- as.double(M[[2]])
94 M3 <<- as.double(M[[3]])
95
96 n <<- nrow(X)
97 d <<- length(M1)
98 W <<- diag(d+d^2+d^3) #initialize at W = Identity
99 },
100
101 expArgs = function(x)
102 {
103 "Expand individual arguments from vector x"
104
105 list(
106 # p: dimension K-1, need to be completed
107 "p" = c(x[1:(K-1)], 1-sum(x[1:(K-1)])),
108 "β" = matrix(x[K:(K+d*K-1)], ncol=K),
109 "b" = x[(K+d*K):(K+(d+1)*K-1)])
110 },
111
112 linArgs = function(o)
113 {
114 " Linearize vectors+matrices into a vector x"
115
116 c(o$p[1:(K-1)], as.double(o$β), o$b)
117 },
118
119 getOmega = function(theta)
120 {
121 dim <- d + d^2 + d^3
122 matrix( .C("Compute_Omega",
123 X=as.double(X), Y=as.double(Y), pn=as.integer(n), pd=as.integer(d),
124 p=as.double(theta$p), β=as.double(theta$β), b=as.double(theta$b),
125 W=as.double(W), PACKAGE="morpheus")$W, nrow=dim, ncol=dim)
126 },
127
128 f = function(theta)
129 {
130 "Product t(Mi - hat_Mi) W (Mi - hat_Mi) with Mi(theta)"
131
132 p <- theta$p
133 β <- theta$β
134 λ <- sqrt(colSums(β^2))
135 b <- theta$b
136
137 # Tensorial products β^2 = β2 and β^3 = β3 must be computed from current β1
138 β2 <- apply(β, 2, function(col) col %o% col)
139 β3 <- apply(β, 2, function(col) col %o% col %o% col)
140
141 A <- matrix(c(
142 β %*% (p * .G(li,1,λ,b)) - M1,
143 β2 %*% (p * .G(li,2,λ,b)) - M2,
144 β3 %*% (p * .G(li,3,λ,b)) - M3), ncol=1)
145 t(A) %*% W %*% A
146 },
147
148 grad_f = function(x)
149 {
150 "Gradient of f, dimension (K-1) + d*K + K = (d+2)*K - 1"
151
152 # TODO: formula -2 t(grad M(theta)) . W . (Mhat - M(theta))
153 }
154
155 grad_M = function(theta)
156 {
157 # TODO: adapt code below for grad of d+d^2+d^3 vector of moments,
158 # instead of grad (sum(Mhat-M(theta)^2)) --> should be easier
159
160 P <- expArgs(x)
161 p <- P$p
162 β <- P$β
163 λ <- sqrt(colSums(β^2))
164 μ <- sweep(β, 2, λ, '/')
165 b <- P$b
166
167 # Tensorial products β^2 = β2 and β^3 = β3 must be computed from current β1
168 β2 <- apply(β, 2, function(col) col %o% col)
169 β3 <- apply(β, 2, function(col) col %o% col %o% col)
170
171 # Some precomputations
172 G1 = .G(li,1,λ,b)
173 G2 = .G(li,2,λ,b)
174 G3 = .G(li,3,λ,b)
175 G4 = .G(li,4,λ,b)
176 G5 = .G(li,5,λ,b)
177
178 # (Mi - hat_Mi)^2 ' == (Mi - hat_Mi)' 2(Mi - hat_Mi) = Mi' Fi
179 F1 = as.double( 2 * ( β %*% (p * G1) - M1 ) )
180 F2 = as.double( 2 * ( β2 %*% (p * G2) - M2 ) )
181 F3 = as.double( 2 * ( β3 %*% (p * G3) - M3 ) )
182
183 km1 = 1:(K-1)
184 grad <- #gradient on p
185 t( sweep(as.matrix(β [,km1]), 2, G1[km1], '*') - G1[K] * β [,K] ) %*% F1 +
186 t( sweep(as.matrix(β2[,km1]), 2, G2[km1], '*') - G2[K] * β2[,K] ) %*% F2 +
187 t( sweep(as.matrix(β3[,km1]), 2, G3[km1], '*') - G3[K] * β3[,K] ) %*% F3
188
189 grad_β <- matrix(nrow=d, ncol=K)
190 for (i in 1:d)
191 {
192 # i determines the derivated matrix dβ[2,3]
193
194 dβ_left <- sweep(β, 2, p * G3 * β[i,], '*')
195 dβ_right <- matrix(0, nrow=d, ncol=K)
196 block <- i
197 dβ_right[block,] <- dβ_right[block,] + 1
198 dβ <- dβ_left + sweep(dβ_right, 2, p * G1, '*')
199
200 dβ2_left <- sweep(β2, 2, p * G4 * β[i,], '*')
201 dβ2_right <- do.call( rbind, lapply(1:d, function(j) {
202 sweep(dβ_right, 2, β[j,], '*')
203 }) )
204 block <- ((i-1)*d+1):(i*d)
205 dβ2_right[block,] <- dβ2_right[block,] + β
206 dβ2 <- dβ2_left + sweep(dβ2_right, 2, p * G2, '*')
207
208 dβ3_left <- sweep(β3, 2, p * G5 * β[i,], '*')
209 dβ3_right <- do.call( rbind, lapply(1:d, function(j) {
210 sweep(dβ2_right, 2, β[j,], '*')
211 }) )
212 block <- ((i-1)*d*d+1):(i*d*d)
213 dβ3_right[block,] <- dβ3_right[block,] + β2
214 dβ3 <- dβ3_left + sweep(dβ3_right, 2, p * G3, '*')
215
216 grad_β[i,] <- t(dβ) %*% F1 + t(dβ2) %*% F2 + t(dβ3) %*% F3
217 }
218 grad <- c(grad, as.double(grad_β))
219
220 grad = c(grad, #gradient on b
221 t( sweep(β, 2, p * G2, '*') ) %*% F1 +
222 t( sweep(β2, 2, p * G3, '*') ) %*% F2 +
223 t( sweep(β3, 2, p * G4, '*') ) %*% F3 )
224
225 grad
226 },
227
228 # TODO: rename x(0) into theta(0) --> θ
229 run = function(x0)
230 {
231 "Run optimization from x0 with solver..."
232
233 if (!is.list(x0))
234 stop("x0: list")
235 if (is.null(x0$β))
236 stop("At least x0$β must be provided")
237 if (!is.matrix(x0$β) || any(is.na(x0$β)) || ncol(x0$β) != K)
238 stop("x0$β: matrix, no NA, ncol == K")
239 if (is.null(x0$p))
240 x0$p = rep(1/K, K-1)
241 else if (length(x0$p) != K-1 || sum(x0$p) > 1)
242 stop("x0$p should contain positive integers and sum to < 1")
243 # Next test = heuristic to detect missing b (when matrix is called "beta")
244 if (is.null(x0$b) || all(x0$b == x0$β))
245 x0$b = rep(0, K)
246 else if (any(is.na(x0$b)))
247 stop("x0$b cannot have missing values")
248
249 op_res = constrOptim( linArgs(x0), .self$f, .self$grad_f,
250 ui=cbind(
251 rbind( rep(-1,K-1), diag(K-1) ),
252 matrix(0, nrow=K, ncol=(d+1)*K) ),
253 ci=c(-1,rep(0,K-1)) )
254
255 # We get a first non-trivial estimation of W: getOmega(theta)^{-1}
256 # TODO: loop, this redefine f, so that we can call constrOptim again...
257 # Stopping condition? N iterations? Delta <= ε ?
258
259 expArgs(op_res$par)
260 }
261 )
262 )
263
264 # Compute vectorial E[g^{(order)}(<β,x> + b)] with x~N(0,Id) (integral in R^d)
265 # = E[g^{(order)}(z)] with z~N(b,diag(λ))
266 # by numerically evaluating the integral.
267 #
268 # @param link Link, 'logit' or 'probit'
269 # @param order Order of derivative
270 # @param λ Norm of columns of β
271 # @param b Intercept
272 #
273 .G <- function(link, order, λ, b)
274 {
275 # NOTE: weird "integral divergent" error on inputs:
276 # link="probit"; order=2; λ=c(531.8099,586.8893,523.5816); b=c(-118.512674,-3.488020,2.109969)
277 # Switch to pracma package for that (but it seems slow...)
278 sapply( seq_along(λ), function(k) {
279 res <- NULL
280 tryCatch({
281 # Fast code, may fail:
282 res <- stats::integrate(
283 function(z) .deriv[[link]][[order]](λ[k]*z+b[k]) * exp(-z^2/2) / sqrt(2*pi),
284 lower=-Inf, upper=Inf )$value
285 }, error = function(e) {
286 # Robust slow code, no fails observed:
287 sink("/dev/null") #pracma package has some useless printed outputs...
288 res <- pracma::integral(
289 function(z) .deriv[[link]][[order]](λ[k]*z+b[k]) * exp(-z^2/2) / sqrt(2*pi),
290 xmin=-Inf, xmax=Inf, method="Kronrod")
291 sink()
292 })
293 res
294 })
295 }
296
297 # Derivatives list: g^(k)(x) for links 'logit' and 'probit'
298 #
299 .deriv <- list(
300 "probit"=list(
301 # 'probit' derivatives list;
302 # NOTE: exact values for the integral E[g^(k)(λz+b)] could be computed
303 function(x) exp(-x^2/2)/(sqrt(2*pi)), #g'
304 function(x) exp(-x^2/2)/(sqrt(2*pi)) * -x, #g''
305 function(x) exp(-x^2/2)/(sqrt(2*pi)) * ( x^2 - 1), #g^(3)
306 function(x) exp(-x^2/2)/(sqrt(2*pi)) * (-x^3 + 3*x), #g^(4)
307 function(x) exp(-x^2/2)/(sqrt(2*pi)) * ( x^4 - 6*x^2 + 3) #g^(5)
308 ),
309 "logit"=list(
310 # Sigmoid derivatives list, obtained with http://www.derivative-calculator.net/
311 # @seealso http://www.ece.uc.edu/~aminai/papers/minai_sigmoids_NN93.pdf
312 function(x) {e=exp(x); .zin(e /(e+1)^2)}, #g'
313 function(x) {e=exp(x); .zin(e*(-e + 1) /(e+1)^3)}, #g''
314 function(x) {e=exp(x); .zin(e*( e^2 - 4*e + 1) /(e+1)^4)}, #g^(3)
315 function(x) {e=exp(x); .zin(e*(-e^3 + 11*e^2 - 11*e + 1) /(e+1)^5)}, #g^(4)
316 function(x) {e=exp(x); .zin(e*( e^4 - 26*e^3 + 66*e^2 - 26*e + 1)/(e+1)^6)} #g^(5)
317 )
318 )
319
320 # Utility for integration: "[return] zero if [argument is] NaN" (Inf / Inf divs)
321 #
322 # @param x Ratio of polynoms of exponentials, as in .S[[i]]
323 #
324 .zin <- function(x)
325 {
326 x[is.nan(x)] <- 0.
327 x
328 }