| 1 | #' Main function |
| 2 | #' |
| 3 | #' @param X matrix of covariates (of size n*p) |
| 4 | #' @param Y matrix of responses (of size n*m) |
| 5 | #' @param procedure among 'LassoMLE' or 'LassoRank' |
| 6 | #' @param selecMod method to select a model among 'DDSE', 'DJump', 'BIC' or 'AIC' |
| 7 | #' @param gamma integer for the power in the penaly, by default = 1 |
| 8 | #' @param mini integer, minimum number of iterations in the EM algorithm, by default = 10 |
| 9 | #' @param maxi integer, maximum number of iterations in the EM algorithm, by default = 100 |
| 10 | #' @param eps real, threshold to say the EM algorithm converges, by default = 1e-4 |
| 11 | #' @param kmin integer, minimum number of clusters, by default = 2 |
| 12 | #' @param kmax integer, maximum number of clusters, by default = 10 |
| 13 | #' @param rang.min integer, minimum rank in the low rank procedure, by default = 1 |
| 14 | #' @param rang.max integer, maximum rank in the |
| 15 | #' @return a list with estimators of parameters |
| 16 | #' @export |
| 17 | #----------------------------------------------------------------------- |
| 18 | valse = function(X,Y,procedure = 'LassoMLE',selecMod = 'DDSE',gamma = 1,mini = 10, |
| 19 | maxi = 50,eps = 1e-4,kmin = 2,kmax = 2, |
| 20 | rang.min = 1,rang.max = 10) { |
| 21 | ################################## |
| 22 | #core workflow: compute all models |
| 23 | ################################## |
| 24 | |
| 25 | p = dim(X)[2] |
| 26 | m = dim(Y)[2] |
| 27 | n = dim(X)[1] |
| 28 | |
| 29 | model = list() |
| 30 | tableauRecap = array(0, dim=c(1000,4)) |
| 31 | cpt = 0 |
| 32 | print("main loop: over all k and all lambda") |
| 33 | |
| 34 | for (k in kmin:kmax){ |
| 35 | print(k) |
| 36 | print("Parameters initialization") |
| 37 | #smallEM initializes parameters by k-means and regression model in each component, |
| 38 | #doing this 20 times, and keeping the values maximizing the likelihood after 10 |
| 39 | #iterations of the EM algorithm. |
| 40 | init = initSmallEM(k, X, Y) |
| 41 | phiInit <<- init$phiInit |
| 42 | rhoInit <<- init$rhoInit |
| 43 | piInit <<- init$piInit |
| 44 | gamInit <<- init$gamInit |
| 45 | source('~/valse/pkg/R/gridLambda.R') |
| 46 | grid_lambda <<- gridLambda(phiInit, rhoInit, piInit, gamInit, X, Y, gamma, mini, maxi, eps) |
| 47 | |
| 48 | if (length(grid_lambda)>100){ |
| 49 | grid_lambda = grid_lambda[seq(1, length(grid_lambda), length.out = 100)] |
| 50 | } |
| 51 | print("Compute relevant parameters") |
| 52 | #select variables according to each regularization parameter |
| 53 | #from the grid: A1 corresponding to selected variables, and |
| 54 | #A2 corresponding to unselected variables. |
| 55 | |
| 56 | params = selectiontotale(phiInit,rhoInit,piInit,gamInit,mini,maxi,gamma,grid_lambda,X,Y,1e-8,eps) |
| 57 | #params2 = selectVariables(phiInit,rhoInit,piInit,gamInit,mini,maxi,gamma,grid_lambda[seq(1,length(grid_lambda), by=3)],X,Y,1e-8,eps) |
| 58 | ## etrange : params et params 2 sont différents ... |
| 59 | selected <<- params$selected |
| 60 | Rho <<- params$Rho |
| 61 | Pi <<- params$Pi |
| 62 | |
| 63 | if (procedure == 'LassoMLE') { |
| 64 | print('run the procedure Lasso-MLE') |
| 65 | #compute parameter estimations, with the Maximum Likelihood |
| 66 | #Estimator, restricted on selected variables. |
| 67 | model[[k]] = constructionModelesLassoMLE(phiInit, rhoInit,piInit,gamInit,mini,maxi,gamma,X,Y,thresh,eps,selected) |
| 68 | llh = matrix(ncol = 2) |
| 69 | for (l in seq_along(model[[k]])){ |
| 70 | llh = rbind(llh, model[[k]][[l]]$llh) |
| 71 | } |
| 72 | LLH = llh[-1,1] |
| 73 | D = llh[-1,2] |
| 74 | } else { |
| 75 | print('run the procedure Lasso-Rank') |
| 76 | #compute parameter estimations, with the Low Rank |
| 77 | #Estimator, restricted on selected variables. |
| 78 | model = constructionModelesLassoRank(Pi, Rho, mini, maxi, X, Y, eps, |
| 79 | A1, rank.min, rank.max) |
| 80 | |
| 81 | ################################################ |
| 82 | ### Regarder la SUITE |
| 83 | phi = runProcedure2()$phi |
| 84 | Phi2 = Phi |
| 85 | if (dim(Phi2)[1] == 0) |
| 86 | { |
| 87 | Phi[, , 1:k,] <<- phi |
| 88 | } else |
| 89 | { |
| 90 | Phi <<- array(0, dim = c(p, m, kmax, dim(Phi2)[4] + dim(phi)[4])) |
| 91 | Phi[, , 1:(dim(Phi2)[3]), 1:(dim(Phi2)[4])] <<- Phi2 |
| 92 | Phi[, , 1:k,-(1:(dim(Phi2)[4]))] <<- phi |
| 93 | } |
| 94 | } |
| 95 | tableauRecap[(cpt+1):(cpt+length(model[[k]])), ] = matrix(c(LLH, D, rep(k, length(model[[k]])), 1:length(model[[k]])), ncol = 4) |
| 96 | cpt = cpt+length(model[[k]]) |
| 97 | } |
| 98 | print('Model selection') |
| 99 | tableauRecap = tableauRecap[rowSums(tableauRecap[, 2:4])!=0,] |
| 100 | tableauRecap = tableauRecap[(tableauRecap[,1])!=Inf,] |
| 101 | data = cbind(1:dim(tableauRecap)[1], tableauRecap[,2], tableauRecap[,2], tableauRecap[,1]) |
| 102 | require(capushe) |
| 103 | modSel = capushe(data, n) |
| 104 | if (selecMod == 'DDSE') { |
| 105 | indModSel = as.numeric(modSel@DDSE@model) |
| 106 | } else if (selecMod == 'Djump') { |
| 107 | indModSel = as.numeric(modSel@Djump@model) |
| 108 | } else if (selecMod == 'BIC') { |
| 109 | indModSel = modSel@BIC_capushe$model |
| 110 | } else if (selecMod == 'AIC') { |
| 111 | indModSel = modSel@AIC_capushe$model |
| 112 | } |
| 113 | return(model[[tableauRecap[indModSel,3]]][[tableauRecap[indModSel,4]]]) |
| 114 | } |