1 #' (De)Serialization of a [big]matrix or data stream
3 #' \code{binarize()} serializes a matrix or CSV file with minimal overhead, into a
4 #' binary file. \code{getDataInFile()} achieves the inverse task: she retrieves (ASCII)
5 #' data rows from indices in the binary file. Finally, \code{binarizeTransform()}
6 #' serialize transformations of all data chunks. To use it a data-retrieval function
7 #' must be provided -- thus \code{binarize} will most likely be used first
8 #' (and then a function defined to seek in generated binary file)
10 #' @param data_ascii Matrix (by columns) or CSV file or connection (by rows)
11 #' @param data_bin_file Name of binary file on output of \code{binarize()}
12 #' or input of \code{getDataInFile()}
13 #' @param nb_per_chunk Number of lines to process in one batch
14 #' @param getData Function to retrieve data chunks
15 #' @param transform Transformation function to apply on data chunks
16 #' @param indices Indices of the lines to retrieve
17 #' @inheritParams claws
19 #' @return For \code{getDataInFile()}, a matrix with columns corresponding to the
20 #' requested indices. \code{binarizeTransform()} returns the number of processed lines.
21 #' \code{binarize()} is designed to serialize in several calls, thus returns nothing.
24 #' @rdname de_serialize
25 #' @aliases binarize binarizeTransform getDataInFile
28 #' @rdname de_serialize
30 binarize <- function(data_ascii, data_bin_file, nb_per_chunk,
31 sep=",", nbytes=4, endian=.Platform$endian)
33 # data_ascii can be of two types: [big.]matrix, or connection
34 if (is.character(data_ascii))
35 data_ascii <- file(data_ascii, open="r")
36 else if (methods::is(data_ascii,"connection") && !isOpen(data_ascii))
38 is_matrix <- !methods::is(data_ascii,"connection")
40 # At first call, the length of a stored row is written. So it's important to determine
41 # if the serialization process already started.
42 first_write <- (!file.exists(data_bin_file) || file.info(data_bin_file)$size == 0)
44 # Open the binary file for writing (or 'append' if already exists)
45 data_bin <- file(data_bin_file, open=ifelse(first_write,"wb","ab"))
49 # Write data length on first call: number of items always on 8 bytes
50 writeBin(0L, data_bin, size=8, endian=endian)
52 data_length <- nrow(data_ascii)
55 # Read the first line to know data length, and write it then
56 data_line <- scan(data_ascii, double(), sep=sep, nlines=1, quiet=TRUE)
57 writeBin(data_line, data_bin, size=nbytes, endian=endian)
58 data_length <- length(data_line)
64 # Data is processed by chunks; although this may not be so useful for (normal) matrix
65 # input, it could for a file-backed big.matrix. It's easier to follow a unified pattern.
73 if (index <= ncol(data_ascii))
74 as.double(data_ascii[,index:min(ncol(data_ascii),index+nb_per_chunk-1)])
77 index <- index + nb_per_chunk
80 data_chunk <- scan(data_ascii, double(), sep=sep, nlines=nb_per_chunk, quiet=TRUE)
82 # Data size is unknown in the case of a connection
83 if (length(data_chunk)==0)
86 # Write this chunk of data to the binary file
87 writeBin(data_chunk, data_bin, size=nbytes, endian=endian)
92 # Write data_length, == (file_size-1) / (nbytes*nbWritten) at offset 0 in data_bin
93 ignored <- seek(data_bin, 0)
94 writeBin(data_length, data_bin, size=8, endian=endian)
102 #' @rdname de_serialize
104 binarizeTransform <- function(getData, transform, data_bin_file, nb_per_chunk,
105 nbytes=4, endian=.Platform$endian)
107 nb_items <- 0 #side-effect: store the number of transformed items
111 # Retrieve a chunk of data in a binary file (generally obtained by binarize())
112 data_chunk <- getData((index-1)+seq_len(nb_per_chunk))
113 if (is.null(data_chunk))
116 # Apply transformation on the current chunk (by columns)
117 transformed_chunk <- transform(data_chunk)
119 # Save the result in binary format
120 binarize(transformed_chunk, data_bin_file, nb_per_chunk, ",", nbytes, endian)
122 index <- index + nb_per_chunk
123 nb_items <- nb_items + ncol(data_chunk)
125 nb_items #number of transformed items
128 #' @rdname de_serialize
130 getDataInFile <- function(indices, data_bin_file, nbytes=4, endian=.Platform$endian)
132 data_bin <- file(data_bin_file, "rb") #source binary file
134 data_size <- file.info(data_bin_file)$size #number of bytes in the file
135 # data_length: length of a vector in the binary file (first element, 8 bytes)
136 data_length <- readBin(data_bin, "integer", n=1, size=8, endian=endian)
138 # Seek all 'indices' columns in the binary file, using data_length and nbytes
139 # to compute the offset ( index i at 8 + i*data_length*nbytes )
140 data_ascii <- do.call( cbind, lapply( indices, function(i) {
141 offset <- 8+(i-1)*data_length*nbytes
142 if (offset >= data_size)
144 ignored <- seek(data_bin, offset) #position cursor at computed offset
145 readBin(data_bin, "double", n=data_length, size=nbytes, endian=endian)
149 data_ascii #retrieved data, in columns