| 1 | library(agghoo) |
| 2 | |
| 3 | data(iris) #already there |
| 4 | library(mlbench) |
| 5 | data(PimaIndiansDiabetes) |
| 6 | |
| 7 | # Run only agghoo on iris dataset (split into train/test, etc). |
| 8 | # Default parameters: see ?agghoo and ?AgghooCV |
| 9 | compareTo(iris[,-5], iris[,5], agghoo_run) |
| 10 | |
| 11 | # Run both agghoo and standard CV, specifiying some parameters. |
| 12 | compareTo(iris[,-5], iris[,5], list(agghoo_run, standardCV_run), gmodel="tree") |
| 13 | compareTo(iris[,-5], iris[,5], list(agghoo_run, standardCV_run), |
| 14 | gmodel="knn", params=c(3, 7, 13, 17, 23, 31), |
| 15 | CV = list(type="vfold", V=5, shuffle=T)) |
| 16 | |
| 17 | # Run both agghoo and standard CV, averaging errors over N=10 runs |
| 18 | # (possible for a single method but wouldn't make much sense...). |
| 19 | compareMulti(PimaIndiansDiabetes[,-9], PimaIndiansDiabetes[,9], |
| 20 | list(agghoo_run, standardCV_run), N=10, gmodel="rf") |
| 21 | |
| 22 | # Compare several values of V |
| 23 | compareRange(PimaIndiansDiabetes[,-9], PimaIndiansDiabetes[,9], |
| 24 | list(agghoo_run, standardCV_run), N=10, V_range=c(10, 20, 30)) |
| 25 | |
| 26 | # For example to use average of squared differences. |
| 27 | # Default is "mean(abs(y1 - y2))". |
| 28 | loss2 <- function(y1, y2) mean((y1 - y2)^2) |
| 29 | |
| 30 | # In regression on artificial datasets (TODO: real data?) |
| 31 | data <- mlbench.twonorm(300, 3)$x |
| 32 | target <- rowSums(data) |
| 33 | compareMulti(data, target, list(agghoo_run, standardCV_run), |
| 34 | N=10, gmodel="tree", params=c(1, 3, 5, 7, 9), loss=loss2, |
| 35 | CV = list(type="MC", V=12, test_size=0.3)) |
| 36 | |
| 37 | compareMulti(data, target, list(agghoo_run, standardCV_run), |
| 38 | N=10, floss=loss2, CV = list(type="vfold", V=10, shuffle=F)) |
| 39 | |
| 40 | # Random tests to check that method doesn't fail in 1D case |
| 41 | M <- matrix(rnorm(200), ncol=2) |
| 42 | compareTo(as.matrix(M[,-2]), M[,2], list(agghoo_run, standardCV_run), gmodel="knn") |
| 43 | compareTo(as.matrix(M[,-2]), M[,2], list(agghoo_run, standardCV_run), gmodel="tree") |