64b28e3e |
1 | ### Regression matrices |
2 | model = res_valse |
3 | K = dim(model$phi)[3] |
4 | valMax = max(abs(model$phi)) |
5 | |
6 | require(fields) |
7 | if (K<4){ |
8 | par(mfrow = c(1,K)) |
9 | } else par(mfrow = c(2, (K+1)/2)) |
10 | |
11 | for (r in 1:K){ |
12 | image.plot(t(abs(model$phi[,,r])), |
13 | col=gray(rev(seq(0,64,length.out=65))/65),breaks=seq(0,valMax,length.out=66)) |
14 | } |
15 | |
16 | ### Zoom onto two classes we want to compare |
17 | kSel = c(1,2) |
18 | par(mfrow = c(1,3)) |
19 | |
20 | for (r in kSel){ |
21 | image.plot(t(abs(model$phi[,,r])),title="hat{beta}",xaxt="n",yaxt="n", |
22 | col=gray(rev(seq(0,64,length.out=65))/65),breaks=seq(0,valMax,length.out=66)) |
23 | } |
24 | image.plot(t(abs(model$phi[,,kSel[1]]-model$phi[,,kSel[2]])), |
25 | col=gray(rev(seq(0,64,length.out=65))/65),breaks=seq(0,valMax,length.out=66)) |
26 | |
27 | ### Covariance matrices |
28 | par(mfrow = c(K, 1)) |
29 | for (r in 1:K){ |
30 | image.plot(matrix(diag(model$rho[,,r]), ncol= 1), |
31 | col=gray(rev(seq(0,64,length.out=65))/65),breaks=seq(0,valMax,length.out=66)) |
32 | } |
33 | |
34 | ### proportions |
35 | Gam = matrix(0, ncol = K, nrow = n) |
36 | gam = Gam |
37 | for (i in 1:n){ |
38 | for (r in 1:k){ |
39 | sqNorm2 = sum( (Y[i,]%*%model$rho[,,r]-X[i,]%*%model$phi[,,r])^2 ) |
40 | Gam[i,r] = model$pi[r] * exp(-0.5*sqNorm2)* det(model$rho[,,r]) |
41 | } |
42 | gam[i,] = Gam[i,] / sum(Gam[i,]) |
43 | } |
44 | affec = apply(gam, 1,which.max) |
45 | gam2 = matrix(NA, ncol = K, nrow = n) |
46 | for (i in 1:n){ |
47 | gam2[i, affec[i]] = gam[i, affec[i]] |
48 | } |
49 | boxplot(gam2) |
50 | |
51 | ### Mean in each cluster |
52 | XY = cbind(X,Y) |
53 | XY_class= list() |
54 | meanPerClass= matrix(0, ncol = K, nrow = dim(XY)[2]) |
55 | for (r in 1:K){ |
56 | XY_class[[r]] = XY[affec == r, ] |
57 | meanPerClass[,r] = apply(XY_class[[r]], 2, mean) |
58 | } |
59 | |
60 | matplot(meanPerClass, type='l') |