fix for CRAN
[morpheus.git] / pkg / R / sampleIO.R
CommitLineData
cbd88fe5
BA
1#' Generate sample inputs-outputs
2#'
3#' Generate input matrix X of size nxd and binary output of size n, where Y is subdivided
4#' into K groups of proportions p. Inside one group, the probability law P(Y=1) is
5#' described by the corresponding column parameter in the matrix β + intercept b.
6#'
7#' @param n Number of individuals
8#' @param p Vector of K-1 populations relative proportions (sum <= 1)
9#' @param β Vectors of model parameters for each population, of size dxK
10#' @param b Vector of intercept values (use rep(0,K) for no intercept)
11#' @param link Link type; "logit" or "probit"
12#'
13#' @return A list with
14#' \itemize{
15#' \item{X: the input matrix (size nxd)}
16#' \item{Y: the output vector (size n)}
17#' \item{index: the population index (in 1:K) for each row in X}
18#' }
19#'
20#' @export
21generateSampleIO = function(n, p, β, b, link)
22{
23 # Check arguments
24 tryCatch({n = as.integer(n)}, error=function(e) stop("Cannot convert n to integer"))
25 if (length(n) > 1)
26 warning("n is a vector but should be scalar: only first element used")
27 if (n <= 0)
28 stop("n: positive integer")
29 if (!is.matrix(β) || !is.numeric(β) || any(is.na(β)))
30 stop("β: real matrix, no NAs")
31 K = ncol(β)
32 if (!is.numeric(p) || length(p)!=K-1 || any(is.na(p)) || any(p<0) || sum(p) > 1)
33 stop("p: positive vector of size K-1, no NA, sum<=1")
34 p <- c(p, 1-sum(p))
35 if (!is.numeric(b) || length(b)!=K || any(is.na(b)))
36 stop("b: real vector of size K, no NA")
37
38 #random generation of the size of each population in X~Y (unordered)
39 classes = rmultinom(1, n, p)
40
41 d = nrow(β)
42 zero_mean = rep(0,d)
43 id_sigma = diag(rep(1,d))
44 # Always consider an intercept (use b=0 for none)
45 d = d + 1
46 β = rbind(β, b)
47 X = matrix(nrow=0, ncol=d)
48 Y = c()
49 index = c()
50 for (i in 1:ncol(β))
51 {
52 index = c(index, rep(i, classes[i]))
53 newXblock = cbind( MASS::mvrnorm(classes[i], zero_mean, id_sigma), 1 )
54 arg_link = newXblock%*%β[,i]
55 probas =
56 if (link == "logit")
57 {
58 e_arg_link = exp(arg_link)
59 e_arg_link / (1 + e_arg_link)
60 }
61 else #"probit"
62 pnorm(arg_link)
63 probas[is.nan(probas)] = 1 #overflow of exp(x)
64 X = rbind(X, newXblock)
65 Y = c( Y, vapply(probas, function(p) (rbinom(1,1,p)), 1) )
66 }
67 shuffle = sample(n)
68 # Returned X should not contain an intercept column (it's an argument of estimation
69 # methods)
70 list("X"=X[shuffle,-d], "Y"=Y[shuffle], "index"=index[shuffle])
71}