Commit | Line | Data |
---|---|---|
3d69ff21 BA |
1 | #' @title Acquire data in a clean format |
2 | #' | |
3 | #' @description Take in input data frames and/or files containing raw data, and timezones, and | |
4 | #' output a Data object, roughly corresponding to a list where each cell contains all value | |
25b75559 | 5 | #' for one day (see \code{?Data}). |
3d69ff21 BA |
6 | #' |
7 | #' @param ts_data Time-series, as a data frame (DB style: 2 columns, first is date/time, | |
8 | #' second is value) or a CSV file | |
9 | #' @param exo_data Exogenous variables, as a data frame or a CSV file; first comlumn is dates, | |
10 | #' next block are measurements for the day, and final block are exogenous forecasts | |
11 | #' @param input_tz Timezone in the input files ("GMT" or e.g. "Europe/Paris") | |
12 | #' @param date_format How date/time are stored (e.g. year/month/day hour:minutes; | |
13 | #' see \code{strptime}) | |
14 | #' @param working_tz Timezone to work with ("GMT" or e.g. "Europe/Paris") | |
09cf9c19 | 15 | #' @param predict_at When does the prediction take place ? Integer, in hours. Default: 0 |
f17665c7 | 16 | #' @param limit Number of days to extract (default: Inf, for "all") |
3d69ff21 | 17 | #' |
a66a84b5 | 18 | #' @return An object of class Data |
3d69ff21 | 19 | #' |
44a9990b BA |
20 | #' @examples |
21 | #' ts_data = read.csv(system.file("extdata","pm10_mesures_H_loc.csv",package="talweg")) | |
22 | #' exo_data = read.csv(system.file("extdata","meteo_extra_noNAs.csv",package="talweg")) | |
25b75559 | 23 | #' data = getData(ts_data, exo_data, limit=120) |
3d69ff21 | 24 | #' @export |
1e20780e BA |
25 | getData = function(ts_data, exo_data, input_tz="GMT", date_format="%d/%m/%Y %H:%M", |
26 | working_tz="GMT", predict_at=0, limit=Inf) | |
3d69ff21 BA |
27 | { |
28 | # Sanity checks (not full, but sufficient at this stage) | |
29 | if (!is.character(input_tz) || !is.character(working_tz)) | |
30 | stop("Bad timezone (see ?timezone)") | |
31 | input_tz = input_tz[1] | |
32 | working_tz = working_tz[1] | |
6d97bfec BA |
33 | if ( (!is.data.frame(ts_data) && !is.character(ts_data)) || |
34 | (!is.data.frame(exo_data) && !is.character(exo_data)) ) | |
613a986f | 35 | stop("Bad time-series / exogenous input (data frame or CSV file)") |
3d69ff21 BA |
36 | if (is.character(ts_data)) |
37 | ts_data = ts_data[1] | |
6d97bfec BA |
38 | if (is.character(exo_data)) |
39 | exo_data = exo_data[1] | |
09cf9c19 BA |
40 | predict_at = as.integer(predict_at)[1] |
41 | if (predict_at<0 || predict_at>23) | |
42 | stop("Bad predict_at (0-23)") | |
3d69ff21 BA |
43 | if (!is.character(date_format)) |
44 | stop("Bad date_format (character)") | |
45 | date_format = date_format[1] | |
46 | ||
47 | ts_df = | |
613a986f BA |
48 | if (is.character(ts_data)) |
49 | read.csv(ts_data) | |
50 | else | |
3d69ff21 | 51 | ts_data |
3d69ff21 | 52 | exo_df = |
613a986f | 53 | if (is.character(exo_data)) |
3d69ff21 | 54 | read.csv(exo_data) |
613a986f | 55 | else |
3d69ff21 | 56 | exo_data |
3d69ff21 BA |
57 | # Convert to the desired timezone (usually "GMT" or "Europe/Paris") |
58 | formatted_dates_POSIXlt = strptime(as.character(ts_df[,1]), date_format, tz=input_tz) | |
59 | ts_df[,1] = format(as.POSIXct(formatted_dates_POSIXlt), tz=working_tz, usetz=TRUE) | |
60 | ||
3d69ff21 BA |
61 | line = 1 #index in PM10 file (24 lines for 1 cell) |
62 | nb_lines = nrow(ts_df) | |
63 | nb_exos = ( ncol(exo_df) - 1 ) / 2 | |
a66a84b5 | 64 | data = Data$new() |
3d69ff21 BA |
65 | i = 1 #index of a cell in data |
66 | while (line <= nb_lines) | |
67 | { | |
68 | time = c() | |
69 | serie = c() | |
09cf9c19 | 70 | repeat |
3d69ff21 | 71 | { |
09cf9c19 BA |
72 | { |
73 | time = c(time, ts_df[line,1]) | |
74 | serie = c(serie, ts_df[line,2]) | |
75 | line = line + 1 | |
76 | }; | |
77 | if (line >= nb_lines + 1 || as.POSIXlt(ts_df[line-1,1])$hour == predict_at) | |
78 | break | |
79 | } | |
3d69ff21 | 80 | |
f17665c7 BA |
81 | exo = as.data.frame( exo_df[i,2:(1+nb_exos)] ) |
82 | exo_hat = as.data.frame( exo_df[i,(1+nb_exos+1):(1+2*nb_exos)] ) | |
3d69ff21 BA |
83 | level = mean(serie, na.rm=TRUE) |
84 | centered_serie = serie - level | |
a66a84b5 | 85 | data$append(time, centered_serie, level, exo, exo_hat) |
1e20780e BA |
86 | if (i >= limit) |
87 | break | |
88 | i = i + 1 | |
3d69ff21 | 89 | } |
a66a84b5 BA |
90 | if (length(data$getCenteredSerie(1)) < length(data$getCenteredSerie(2))) |
91 | data$removeFirst() | |
92 | if (length(data$getCenteredSerie(data$getSize())) | |
93 | < length(data$getCenteredSerie(data$getSize()-1))) | |
f17665c7 | 94 | { |
a66a84b5 | 95 | data$removeLast() |
f17665c7 | 96 | } |
f17665c7 | 97 | data |
3d69ff21 | 98 | } |