code seems OK; still wavelets test to write
[epclust.git] / epclust / tests / testthat / test.clustering.R
CommitLineData
56857861
BA
1context("clustering")
2
56857861
BA
3test_that("computeSynchrones behave as expected",
4{
a52836b2
BA
5 # Generate 300 sinusoïdal series of 3 kinds: all series of indices == 0 mod 3 are the same
6 # (plus noise), all series of indices == 1 mod 3 are the same (plus noise) ...
8702eb86
BA
7 n = 300
8 x = seq(0,9.5,0.1)
9 L = length(x) #96 1/4h
10 K = 3
11 s1 = cos(x)
12 s2 = sin(x)
13 s3 = c( s1[1:(L%/%2)] , s2[(L%/%2+1):L] )
14 #sum((s1-s2)^2) == 96
15 #sum((s1-s3)^2) == 58
16 #sum((s2-s3)^2) == 38
17 s = list(s1, s2, s3)
37c82bba 18 series = matrix(nrow=L, ncol=n)
8702eb86 19 for (i in seq_len(n))
37c82bba 20 series[,i] = s[[I(i,K)]] + rnorm(L,sd=0.01)
a52836b2 21
8702eb86 22 getRefSeries = function(indices) {
492cd9e7 23 indices = indices[indices <= n]
a52836b2 24 if (length(indices)>0) as.matrix(series[,indices]) else NULL
8702eb86 25 }
a52836b2 26
37c82bba 27 synchrones = computeSynchrones(bigmemory::as.big.matrix(cbind(s1,s2,s3)), getRefSeries,
d9bb53c5 28 n, 100, verbose=TRUE, parll=FALSE)
56857861 29
37c82bba 30 expect_equal(dim(synchrones), c(L,K))
8702eb86 31 for (i in 1:K)
a52836b2
BA
32 {
33 # Synchrones are (for each medoid) sums of closest curves.
34 # Here, we expect exactly 100 curves of each kind to be assigned respectively to
35 # synchrone 1, 2 and 3 => division by 100 should be very close to the ref curve
d9bb53c5 36 expect_equal(synchrones[,i]/100, s[[i]], tolerance=0.01)
a52836b2 37 }
56857861
BA
38})
39
0486fbad 40test_that("Helper function to spread indices work properly",
8702eb86 41{
0486fbad
BA
42 indices <- 1:400
43
44 # bigger nb_per_set than length(indices)
45 expect_equal(epclust:::.spreadIndices(indices,500), list(indices))
46
47 # nb_per_set == length(indices)
48 expect_equal(epclust:::.spreadIndices(indices,400), list(indices))
49
50 # length(indices) %% nb_per_set == 0
51 expect_equal(epclust:::.spreadIndices(indices,200),
52 c( list(indices[1:200]), list(indices[201:400]) ))
53 expect_equal(epclust:::.spreadIndices(indices,100),
54 c( list(indices[1:100]), list(indices[101:200]),
55 list(indices[201:300]), list(indices[301:400]) ))
56
57 # length(indices) / nb_per_set == 1, length(indices) %% nb_per_set == 100
58 expect_equal(epclust:::.spreadIndices(indices,300), list(indices))
59 # length(indices) / nb_per_set == 2, length(indices) %% nb_per_set == 42
60 repartition <- epclust:::.spreadIndices(indices,179)
61 expect_equal(length(repartition), 2)
62 expect_equal(length(repartition[[1]]), 179 + 21)
63 expect_equal(length(repartition[[1]]), 179 + 21)
64})
8702eb86 65
e161499b 66test_that("clusteringTask1 behave as expected",
56857861 67{
a52836b2
BA
68 # Generate 60 reference sinusoïdal series (medoids to be found),
69 # and sample 900 series around them (add a small noise)
8702eb86
BA
70 n = 900
71 x = seq(0,9.5,0.1)
72 L = length(x) #96 1/4h
73 K1 = 60
8702eb86 74 s = lapply( seq_len(K1), function(i) x^(1+i/30)*cos(x+i) )
0fe757f7 75 series = matrix(nrow=L, ncol=n)
8702eb86 76 for (i in seq_len(n))
37c82bba 77 series[,i] = s[[I(i,K1)]] + rnorm(L,sd=0.01)
a52836b2 78
e161499b 79 getSeries = function(indices) {
492cd9e7 80 indices = indices[indices <= n]
a52836b2 81 if (length(indices)>0) as.matrix(series[,indices]) else NULL
8702eb86 82 }
a52836b2 83
e161499b
BA
84 wf = "haar"
85 ctype = "absolute"
37c82bba 86 getContribs = function(indices) curvesToContribs(series[,indices],wf,ctype)
a52836b2 87
0fe757f7 88 require("cluster", quietly=TRUE)
9f05a4a0 89 algoClust1 = function(contribs,K) cluster::pam(t(contribs),K,diss=FALSE)$id.med
0fe757f7 90 indices1 = clusteringTask1(1:n, getContribs, K1, algoClust1, 75, verbose=TRUE, parll=FALSE)
e161499b 91 medoids_K1 = getSeries(indices1)
56857861 92
37c82bba 93 expect_equal(dim(medoids_K1), c(L,K1))
8702eb86 94 # Not easy to evaluate result: at least we expect it to be better than random selection of
e161499b 95 # medoids within initial series
a52836b2 96 distor_good = computeDistortion(series, medoids_K1)
8702eb86 97 for (i in 1:3)
a52836b2 98 expect_lte( distor_good, computeDistortion(series,series[,sample(1:n, K1)]) )
56857861
BA
99})
100
e161499b 101test_that("clusteringTask2 behave as expected",
56857861 102{
a52836b2
BA
103 skip("Unexplained failure")
104
105 # Same 60 reference sinusoïdal series than in clusteringTask1 test,
106 # but this time we consider them as medoids - skipping stage 1
107 # Here also we sample 900 series around the 60 "medoids"
8702eb86
BA
108 n = 900
109 x = seq(0,9.5,0.1)
110 L = length(x) #96 1/4h
111 K1 = 60
112 K2 = 3
e161499b 113 #for (i in 1:60) {plot(x^(1+i/30)*cos(x+i),type="l",col=i,ylim=c(-50,50)); par(new=TRUE)}
8702eb86 114 s = lapply( seq_len(K1), function(i) x^(1+i/30)*cos(x+i) )
0fe757f7 115 series = matrix(nrow=L, ncol=n)
8702eb86 116 for (i in seq_len(n))
9f05a4a0 117 series[,i] = s[[I(i,K1)]] + rnorm(L,sd=0.01)
a52836b2 118
e161499b 119 getRefSeries = function(indices) {
8702eb86 120 indices = indices[indices <= n]
a52836b2 121 if (length(indices)>0) as.matrix(series[,indices]) else NULL
8702eb86 122 }
a52836b2
BA
123
124 # Perfect situation: all medoids "after stage 1" are good.
37c82bba 125 medoids_K1 = bigmemory::as.big.matrix( sapply( 1:K1, function(i) s[[I(i,K1)]] ) )
9f05a4a0
BA
126 algoClust2 = function(dists,K) cluster::pam(dists,K,diss=TRUE)$id.med
127 medoids_K2 = clusteringTask2(medoids_K1, K2, algoClust2, getRefSeries,
a52836b2 128 n, 75, 4, 8, "little", verbose=TRUE, parll=FALSE)
56857861 129
37c82bba 130 expect_equal(dim(medoids_K2), c(L,K2))
8702eb86 131 # Not easy to evaluate result: at least we expect it to be better than random selection of
a52836b2
BA
132 # synchrones within 1...K1 (from where distances computations + clustering was run)
133 synchrones = computeSynchrones(medoids_K1,getRefSeries,n,75,verbose=FALSE,parll=FALSE)
134 distor_good = computeDistortion(synchrones, medoids_K2)
8702eb86 135 for (i in 1:3)
a52836b2 136 expect_lte( distor_good, computeDistortion(synchrones, synchrones[,sample(1:K1,3)]) )
56857861 137})