Commit | Line | Data |
---|---|---|
e030a6e3 BA |
1 | #' @title plot curves |
2 | #' | |
3 | #' @description Plot a range of curves in data | |
4 | #' | |
5 | #' @param data Object of class Data | |
6 | #' @param indices Range of indices (integers or dates) | |
7 | #' | |
8 | #' @export | |
9 | plotCurves <- function(data, indices) | |
10 | { | |
11 | yrange = range( sapply( indices, function(i) { | |
12 | serie = c(data$getCenteredSerie(i)) | |
13 | if (!all(is.na(serie))) | |
14 | range(serie, na.rm=TRUE) | |
15 | c() | |
16 | }) ) | |
17 | par(mar=c(4.7,5,1,1), cex.axis=1.5, cex.lab=1.5) | |
18 | for (i in seq_along(indices)) | |
19 | { | |
20 | plot(data$getSerie(indices[i]), type="l", ylim=yrange, | |
21 | xlab=ifelse(i==1,"Temps (en heures)",""), ylab=ifelse(i==1,"PM10","")) | |
22 | if (ii < length(indices)) | |
23 | par(new=TRUE) | |
24 | } | |
25 | } | |
26 | ||
3d69ff21 BA |
27 | #' @title plot measured / predicted |
28 | #' | |
29 | #' @description Plot measured curve (in black) and predicted curve (in red) | |
30 | #' | |
31 | #' @param data Object return by \code{getData} | |
32 | #' @param pred Object as returned by \code{getForecast} | |
33 | #' @param index Index in forecasts | |
34 | #' | |
35 | #' @export | |
36 | plotPredReal <- function(data, pred, index) | |
37 | { | |
38 | horizon = length(pred$getSerie(1)) | |
4e95ec8f | 39 | par(mar=c(4.7,5,1,1), cex.axis=1.5, cex.lab=1.5, lwd=3) |
3d69ff21 BA |
40 | measure = data$getSerie(pred$getIndexInData(index)+1)[1:horizon] |
41 | yrange = range( pred$getSerie(index), measure ) | |
4e95ec8f | 42 | plot(measure, type="l", ylim=yrange, xlab="Temps (en heures)", ylab="PM10") |
3d69ff21 | 43 | par(new=TRUE) |
4e95ec8f | 44 | plot(pred$getSerie(index), type="l", col="#0000FF", ylim=yrange, xlab="", ylab="") |
3d69ff21 BA |
45 | } |
46 | ||
47 | #' @title Plot filaments | |
48 | #' | |
49 | #' @description Plot similar days in the past + "past tomorrow", as black as distances are small | |
50 | #' | |
51 | #' @param data Object as returned by \code{getData} | |
52 | #' @param index Index in data | |
53 | #' @param limit Number of neighbors to consider | |
54 | #' | |
55 | #' @export | |
56 | plotFilaments <- function(data, index, limit=60) | |
57 | { | |
58 | index = dateIndexToInteger(index, data) | |
59 | ref_serie = data$getCenteredSerie(index) | |
60 | if (any(is.na(ref_serie))) | |
61 | stop("plotFilaments requires a serie without NAs") | |
62 | L = length(ref_serie) | |
63 | first_day = ifelse(length(data$getCenteredSerie(1)<L), 2, 1) | |
64 | distances = sapply(first_day:(index-1), function(i) { | |
65 | sqrt( sum( (ref_serie - data$getCenteredSerie(i))^2 ) / L ) | |
66 | }) | |
67 | # HACK to suppress NA effect while keeping indexation | |
68 | distances[is.na(distances)] = max(distances,na.rm=TRUE) + 1 | |
69 | indices = sort(distances, index.return=TRUE)$ix[1:min(limit,index-first_day)] | |
70 | yrange = range( ref_serie, sapply( indices, function(i) { | |
71 | index = i - first_day + 1 | |
72 | serie = c(data$getCenteredSerie(index), data$getCenteredSerie(index+1)) | |
73 | if (!all(is.na(serie))) | |
e030a6e3 BA |
74 | range(serie, na.rm=TRUE) |
75 | c() | |
3d69ff21 BA |
76 | }) ) |
77 | grays = gray.colors(20, 0.1, 0.9) #TODO: 20 == magic number | |
78 | colors = c( | |
79 | grays[ floor( 20.5 * distances[indices] / (1+max(distances[indices])) ) ], "#FF0000") | |
4e95ec8f | 80 | par(mar=c(4.7,5,1,1), cex.axis=1.5, cex.lab=1.5, lwd=2) |
3d69ff21 BA |
81 | for (i in seq_len(length(indices)+1)) |
82 | { | |
83 | ind = ifelse(i<=length(indices), indices[i] - first_day + 1, index) | |
84 | plot(c(data$getCenteredSerie(ind),data$getCenteredSerie(ind+1)), | |
85 | ylim=yrange, type="l", col=colors[i], | |
86 | xlab=ifelse(i==1,"Temps (en heures)",""), ylab=ifelse(i==1,"PM10 centré","")) | |
87 | if (i <= length(indices)) | |
88 | par(new=TRUE) | |
89 | } | |
90 | } | |
91 | ||
92 | #' @title Plot similarities | |
93 | #' | |
94 | #' @description Plot histogram of similarities (weights) | |
95 | #' | |
96 | #' @param pred Object as returned by \code{getForecast} | |
97 | #' @param index Index in forecasts (not in data) | |
98 | #' | |
99 | #' @export | |
100 | plotSimils <- function(pred, index) | |
101 | { | |
102 | weights = pred$getParams(index)$weights | |
103 | if (is.null(weights)) | |
104 | stop("plotSimils only works on 'Neighbors' forecasts") | |
4e95ec8f BA |
105 | par(mar=c(4.7,5,1,1), cex.axis=1.5, cex.lab=1.5) |
106 | hist(pred$getParams(index)$weights, nclass=20, xlab="Poids", ylab="Effectif") | |
3d69ff21 BA |
107 | } |
108 | ||
109 | #' @title Plot error | |
110 | #' | |
111 | #' @description Draw error graphs, potentially from several runs of \code{getForecast} | |
112 | #' | |
113 | #' @param err Error as returned by \code{getError} | |
09cf9c19 | 114 | #' @param cols Colors for each error (default: 1,2,3,...) |
3d69ff21 BA |
115 | #' |
116 | #' @seealso \code{\link{plotPredReal}}, \code{\link{plotFilaments}}, \code{\link{plotSimils}} | |
117 | #' \code{\link{plotFbox}} | |
118 | #' | |
119 | #' @export | |
09cf9c19 | 120 | plotError <- function(err, cols=seq_along(err)) |
3d69ff21 | 121 | { |
09cf9c19 BA |
122 | if (!is.null(err$abs)) |
123 | err = list(err) | |
4e95ec8f | 124 | par(mfrow=c(2,2), mar=c(4.7,5,1,1), cex.axis=1.5, cex.lab=1.5, lwd=2) |
3d69ff21 BA |
125 | L = length(err) |
126 | yrange = range( sapply(1:L, function(index) ( err[[index]]$abs$day ) ), na.rm=TRUE ) | |
127 | for (i in seq_len(L)) | |
128 | { | |
129 | plot(err[[i]]$abs$day, type="l", xlab=ifelse(i==1,"Temps (heures)",""), | |
09cf9c19 | 130 | ylab=ifelse(i==1,"Moyenne |y - y_hat|",""), ylim=yrange, col=cols[i]) |
3d69ff21 BA |
131 | if (i < L) |
132 | par(new=TRUE) | |
133 | } | |
134 | yrange = range( sapply(1:L, function(index) ( err[[index]]$abs$indices ) ), na.rm=TRUE ) | |
135 | for (i in seq_len(L)) | |
136 | { | |
137 | plot(err[[i]]$abs$indices, type="l", xlab=ifelse(i==1,"Temps (jours)",""), | |
09cf9c19 | 138 | ylab=ifelse(i==1,"Moyenne |y - y_hat|",""), ylim=yrange, col=cols[i]) |
3d69ff21 BA |
139 | if (i < L) |
140 | par(new=TRUE) | |
141 | } | |
142 | yrange = range( sapply(1:L, function(index) ( err[[index]]$MAPE$day ) ), na.rm=TRUE ) | |
143 | for (i in seq_len(L)) | |
144 | { | |
145 | plot(err[[i]]$MAPE$day, type="l", xlab=ifelse(i==1,"Temps (heures)",""), | |
09cf9c19 | 146 | ylab=ifelse(i==1,"MAPE moyen",""), ylim=yrange, col=cols[i]) |
3d69ff21 BA |
147 | if (i < L) |
148 | par(new=TRUE) | |
149 | } | |
150 | yrange = range( sapply(1:L, function(index) ( err[[index]]$MAPE$indices ) ), na.rm=TRUE ) | |
151 | for (i in seq_len(L)) | |
152 | { | |
153 | plot(err[[i]]$MAPE$indices, type="l", xlab=ifelse(i==1,"Temps (jours)",""), | |
09cf9c19 | 154 | ylab=ifelse(i==1,"MAPE moyen",""), ylim=yrange, col=cols[i]) |
3d69ff21 BA |
155 | if (i < L) |
156 | par(new=TRUE) | |
157 | } | |
158 | } | |
159 | ||
160 | #' @title Functional boxplot | |
161 | #' | |
162 | #' @description Draw the functional boxplot on the left, and bivariate plot on the right | |
163 | #' | |
164 | #' @param data Object return by \code{getData} | |
165 | #' @param fiter Optional filter: return TRUE on indices to process | |
166 | #' | |
167 | #' @export | |
09cf9c19 | 168 | plotFbox <- function(data, filter=function(index) TRUE) |
3d69ff21 BA |
169 | { |
170 | if (!requireNamespace("rainbow", quietly=TRUE)) | |
171 | stop("Functional boxplot requires the rainbow package") | |
172 | ||
173 | start_index = 1 | |
174 | end_index = data$getSize() | |
175 | if (length(data$getCenteredSerie(1)) < length(data$getCenteredSerie(2))) | |
176 | { | |
177 | # Shifted start (7am, or 1pm, or...) | |
178 | start_index = 2 | |
179 | end_index = data$getSize() - 1 | |
180 | } | |
181 | ||
182 | series_matrix = sapply(start_index:end_index, function(index) { | |
183 | as.matrix(data$getSerie(index)) | |
184 | }) | |
185 | # Remove NAs. + filter TODO: merge with previous step: only one pass required... | |
186 | nas_indices = seq_len(ncol(series_matrix))[ sapply( 1:ncol(series_matrix), | |
187 | function(index) ( !filter(index) || any(is.na(series_matrix[,index])) ) ) ] | |
188 | series_matrix = series_matrix[,-nas_indices] | |
189 | ||
190 | series_fds = rainbow::fds(seq_len(nrow(series_matrix)), series_matrix) | |
4e95ec8f | 191 | par(mfrow=c(1,2), mar=c(4.7,5,1,1), cex.axis=1.5, cex.lab=1.5) |
3d69ff21 BA |
192 | rainbow::fboxplot(series_fds, "functional", "hdr", xlab="Temps (heures)", ylab="PM10", |
193 | plotlegend=FALSE, lwd=2) | |
194 | rainbow::fboxplot(series_fds, "bivariate", "hdr", plotlegend=FALSE) | |
195 | } |