Draft Eightpieces rules. Fix display: PNG images + promotions on 2 lines
[vchess.git] / client / src / base_rules.js
1 // (Orthodox) Chess rules are defined in ChessRules class.
2 // Variants generally inherit from it, and modify some parts.
3
4 import { ArrayFun } from "@/utils/array";
5 import { randInt, shuffle } from "@/utils/alea";
6
7 // class "PiPo": Piece + Position
8 export const PiPo = class PiPo {
9 // o: {piece[p], color[c], posX[x], posY[y]}
10 constructor(o) {
11 this.p = o.p;
12 this.c = o.c;
13 this.x = o.x;
14 this.y = o.y;
15 }
16 };
17
18 export const Move = class Move {
19 // o: {appear, vanish, [start,] [end,]}
20 // appear,vanish = arrays of PiPo
21 // start,end = coordinates to apply to trigger move visually (think castle)
22 constructor(o) {
23 this.appear = o.appear;
24 this.vanish = o.vanish;
25 this.start = o.start ? o.start : { x: o.vanish[0].x, y: o.vanish[0].y };
26 this.end = o.end ? o.end : { x: o.appear[0].x, y: o.appear[0].y };
27 }
28 };
29
30 // NOTE: x coords = top to bottom; y = left to right (from white player perspective)
31 export const ChessRules = class ChessRules {
32 //////////////
33 // MISC UTILS
34
35 // Some variants don't have flags:
36 static get HasFlags() {
37 return true;
38 }
39
40 // Or castle
41 static get HasCastle() {
42 return V.HasFlags;
43 }
44
45 // Some variants don't have en-passant
46 static get HasEnpassant() {
47 return true;
48 }
49
50 // Some variants cannot have analyse mode
51 static get CanAnalyze() {
52 return true;
53 }
54 // Patch: issues with javascript OOP, objects can't access static fields.
55 get canAnalyze() {
56 return V.CanAnalyze;
57 }
58
59 // Some variants show incomplete information,
60 // and thus show only a partial moves list or no list at all.
61 static get ShowMoves() {
62 return "all";
63 }
64 get showMoves() {
65 return V.ShowMoves;
66 }
67
68 // Some variants always show the same orientation
69 static get CanFlip() {
70 return true;
71 }
72 get canFlip() {
73 return V.CanFlip;
74 }
75
76 static get IMAGE_EXTENSION() {
77 // All pieces should be in the SVG format
78 return ".svg";
79 }
80
81 // Turn "wb" into "B" (for FEN)
82 static board2fen(b) {
83 return b[0] == "w" ? b[1].toUpperCase() : b[1];
84 }
85
86 // Turn "p" into "bp" (for board)
87 static fen2board(f) {
88 return f.charCodeAt() <= 90 ? "w" + f.toLowerCase() : "b" + f;
89 }
90
91 // Check if FEN describe a board situation correctly
92 static IsGoodFen(fen) {
93 const fenParsed = V.ParseFen(fen);
94 // 1) Check position
95 if (!V.IsGoodPosition(fenParsed.position)) return false;
96 // 2) Check turn
97 if (!fenParsed.turn || !V.IsGoodTurn(fenParsed.turn)) return false;
98 // 3) Check moves count
99 if (!fenParsed.movesCount || !(parseInt(fenParsed.movesCount) >= 0))
100 return false;
101 // 4) Check flags
102 if (V.HasFlags && (!fenParsed.flags || !V.IsGoodFlags(fenParsed.flags)))
103 return false;
104 // 5) Check enpassant
105 if (
106 V.HasEnpassant &&
107 (!fenParsed.enpassant || !V.IsGoodEnpassant(fenParsed.enpassant))
108 ) {
109 return false;
110 }
111 return true;
112 }
113
114 // Is position part of the FEN a priori correct?
115 static IsGoodPosition(position) {
116 if (position.length == 0) return false;
117 const rows = position.split("/");
118 if (rows.length != V.size.x) return false;
119 let kings = {};
120 for (let row of rows) {
121 let sumElts = 0;
122 for (let i = 0; i < row.length; i++) {
123 if (['K','k'].includes(row[i]))
124 kings[row[i]] = true;
125 if (V.PIECES.includes(row[i].toLowerCase())) sumElts++;
126 else {
127 const num = parseInt(row[i]);
128 if (isNaN(num)) return false;
129 sumElts += num;
130 }
131 }
132 if (sumElts != V.size.y) return false;
133 }
134 // Both kings should be on board:
135 if (Object.keys(kings).length != 2)
136 return false;
137 return true;
138 }
139
140 // For FEN checking
141 static IsGoodTurn(turn) {
142 return ["w", "b"].includes(turn);
143 }
144
145 // For FEN checking
146 static IsGoodFlags(flags) {
147 // NOTE: a little too permissive to work with more variants
148 return !!flags.match(/^[a-z]{4,4}$/);
149 }
150
151 static IsGoodEnpassant(enpassant) {
152 if (enpassant != "-") {
153 const ep = V.SquareToCoords(enpassant);
154 if (isNaN(ep.x) || !V.OnBoard(ep)) return false;
155 }
156 return true;
157 }
158
159 // 3 --> d (column number to letter)
160 static CoordToColumn(colnum) {
161 return String.fromCharCode(97 + colnum);
162 }
163
164 // d --> 3 (column letter to number)
165 static ColumnToCoord(column) {
166 return column.charCodeAt(0) - 97;
167 }
168
169 // a4 --> {x:3,y:0}
170 static SquareToCoords(sq) {
171 return {
172 // NOTE: column is always one char => max 26 columns
173 // row is counted from black side => subtraction
174 x: V.size.x - parseInt(sq.substr(1)),
175 y: sq[0].charCodeAt() - 97
176 };
177 }
178
179 // {x:0,y:4} --> e8
180 static CoordsToSquare(coords) {
181 return V.CoordToColumn(coords.y) + (V.size.x - coords.x);
182 }
183
184 // Path to pieces
185 getPpath(b) {
186 return b; //usual pieces in pieces/ folder
187 }
188
189 // Path to promotion pieces (usually the same)
190 getPPpath(b) {
191 return this.getPpath(b);
192 }
193
194 // Aggregates flags into one object
195 aggregateFlags() {
196 return this.castleFlags;
197 }
198
199 // Reverse operation
200 disaggregateFlags(flags) {
201 this.castleFlags = flags;
202 }
203
204 // En-passant square, if any
205 getEpSquare(moveOrSquare) {
206 if (!moveOrSquare) return undefined;
207 if (typeof moveOrSquare === "string") {
208 const square = moveOrSquare;
209 if (square == "-") return undefined;
210 return V.SquareToCoords(square);
211 }
212 // Argument is a move:
213 const move = moveOrSquare;
214 const s = move.start,
215 e = move.end;
216 if (
217 Math.abs(s.x - e.x) == 2 &&
218 s.y == e.y &&
219 move.appear[0].p == V.PAWN
220 ) {
221 return {
222 x: (s.x + e.x) / 2,
223 y: s.y
224 };
225 }
226 return undefined; //default
227 }
228
229 // Can thing on square1 take thing on square2
230 canTake([x1, y1], [x2, y2]) {
231 return this.getColor(x1, y1) !== this.getColor(x2, y2);
232 }
233
234 // Is (x,y) on the chessboard?
235 static OnBoard(x, y) {
236 return x >= 0 && x < V.size.x && y >= 0 && y < V.size.y;
237 }
238
239 // Used in interface: 'side' arg == player color
240 canIplay(side, [x, y]) {
241 return this.turn == side && this.getColor(x, y) == side;
242 }
243
244 // On which squares is color under check ? (for interface)
245 getCheckSquares(color) {
246 return (
247 this.underCheck(color)
248 ? [JSON.parse(JSON.stringify(this.kingPos[color]))] //need to duplicate!
249 : []
250 );
251 }
252
253 /////////////
254 // FEN UTILS
255
256 // Setup the initial random (asymmetric) position
257 static GenRandInitFen(randomness) {
258 if (randomness == 0)
259 // Deterministic:
260 return "rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w 0 ahah -";
261
262 let pieces = { w: new Array(8), b: new Array(8) };
263 let flags = "";
264 // Shuffle pieces on first (and last rank if randomness == 2)
265 for (let c of ["w", "b"]) {
266 if (c == 'b' && randomness == 1) {
267 pieces['b'] = pieces['w'];
268 flags += flags;
269 break;
270 }
271
272 let positions = ArrayFun.range(8);
273
274 // Get random squares for bishops
275 let randIndex = 2 * randInt(4);
276 const bishop1Pos = positions[randIndex];
277 // The second bishop must be on a square of different color
278 let randIndex_tmp = 2 * randInt(4) + 1;
279 const bishop2Pos = positions[randIndex_tmp];
280 // Remove chosen squares
281 positions.splice(Math.max(randIndex, randIndex_tmp), 1);
282 positions.splice(Math.min(randIndex, randIndex_tmp), 1);
283
284 // Get random squares for knights
285 randIndex = randInt(6);
286 const knight1Pos = positions[randIndex];
287 positions.splice(randIndex, 1);
288 randIndex = randInt(5);
289 const knight2Pos = positions[randIndex];
290 positions.splice(randIndex, 1);
291
292 // Get random square for queen
293 randIndex = randInt(4);
294 const queenPos = positions[randIndex];
295 positions.splice(randIndex, 1);
296
297 // Rooks and king positions are now fixed,
298 // because of the ordering rook-king-rook
299 const rook1Pos = positions[0];
300 const kingPos = positions[1];
301 const rook2Pos = positions[2];
302
303 // Finally put the shuffled pieces in the board array
304 pieces[c][rook1Pos] = "r";
305 pieces[c][knight1Pos] = "n";
306 pieces[c][bishop1Pos] = "b";
307 pieces[c][queenPos] = "q";
308 pieces[c][kingPos] = "k";
309 pieces[c][bishop2Pos] = "b";
310 pieces[c][knight2Pos] = "n";
311 pieces[c][rook2Pos] = "r";
312 flags += V.CoordToColumn(rook1Pos) + V.CoordToColumn(rook2Pos);
313 }
314 // Add turn + flags + enpassant
315 return (
316 pieces["b"].join("") +
317 "/pppppppp/8/8/8/8/PPPPPPPP/" +
318 pieces["w"].join("").toUpperCase() +
319 " w 0 " + flags + " -"
320 );
321 }
322
323 // "Parse" FEN: just return untransformed string data
324 static ParseFen(fen) {
325 const fenParts = fen.split(" ");
326 let res = {
327 position: fenParts[0],
328 turn: fenParts[1],
329 movesCount: fenParts[2]
330 };
331 let nextIdx = 3;
332 if (V.HasFlags) Object.assign(res, { flags: fenParts[nextIdx++] });
333 if (V.HasEnpassant) Object.assign(res, { enpassant: fenParts[nextIdx] });
334 return res;
335 }
336
337 // Return current fen (game state)
338 getFen() {
339 return (
340 this.getBaseFen() + " " +
341 this.getTurnFen() + " " +
342 this.movesCount +
343 (V.HasFlags ? " " + this.getFlagsFen() : "") +
344 (V.HasEnpassant ? " " + this.getEnpassantFen() : "")
345 );
346 }
347
348 getFenForRepeat() {
349 // Omit movesCount, only variable allowed to differ
350 return (
351 this.getBaseFen() + "_" +
352 this.getTurnFen() +
353 (V.HasFlags ? "_" + this.getFlagsFen() : "") +
354 (V.HasEnpassant ? "_" + this.getEnpassantFen() : "")
355 );
356 }
357
358 // Position part of the FEN string
359 getBaseFen() {
360 let position = "";
361 for (let i = 0; i < V.size.x; i++) {
362 let emptyCount = 0;
363 for (let j = 0; j < V.size.y; j++) {
364 if (this.board[i][j] == V.EMPTY) emptyCount++;
365 else {
366 if (emptyCount > 0) {
367 // Add empty squares in-between
368 position += emptyCount;
369 emptyCount = 0;
370 }
371 position += V.board2fen(this.board[i][j]);
372 }
373 }
374 if (emptyCount > 0) {
375 // "Flush remainder"
376 position += emptyCount;
377 }
378 if (i < V.size.x - 1) position += "/"; //separate rows
379 }
380 return position;
381 }
382
383 getTurnFen() {
384 return this.turn;
385 }
386
387 // Flags part of the FEN string
388 getFlagsFen() {
389 let flags = "";
390 // Castling flags
391 for (let c of ["w", "b"])
392 flags += this.castleFlags[c].map(V.CoordToColumn).join("");
393 return flags;
394 }
395
396 // Enpassant part of the FEN string
397 getEnpassantFen() {
398 const L = this.epSquares.length;
399 if (!this.epSquares[L - 1]) return "-"; //no en-passant
400 return V.CoordsToSquare(this.epSquares[L - 1]);
401 }
402
403 // Turn position fen into double array ["wb","wp","bk",...]
404 static GetBoard(position) {
405 const rows = position.split("/");
406 let board = ArrayFun.init(V.size.x, V.size.y, "");
407 for (let i = 0; i < rows.length; i++) {
408 let j = 0;
409 for (let indexInRow = 0; indexInRow < rows[i].length; indexInRow++) {
410 const character = rows[i][indexInRow];
411 const num = parseInt(character);
412 // If num is a number, just shift j:
413 if (!isNaN(num)) j += num;
414 // Else: something at position i,j
415 else board[i][j++] = V.fen2board(character);
416 }
417 }
418 return board;
419 }
420
421 // Extract (relevant) flags from fen
422 setFlags(fenflags) {
423 // white a-castle, h-castle, black a-castle, h-castle
424 this.castleFlags = { w: [true, true], b: [true, true] };
425 for (let i = 0; i < 4; i++) {
426 this.castleFlags[i < 2 ? "w" : "b"][i % 2] =
427 V.ColumnToCoord(fenflags.charAt(i));
428 }
429 }
430
431 //////////////////
432 // INITIALIZATION
433
434 // Fen string fully describes the game state
435 constructor(fen) {
436 if (!fen)
437 // In printDiagram() fen isn't supply because only getPpath() is used
438 // TODO: find a better solution!
439 return;
440 const fenParsed = V.ParseFen(fen);
441 this.board = V.GetBoard(fenParsed.position);
442 this.turn = fenParsed.turn[0]; //[0] to work with MarseilleRules
443 this.movesCount = parseInt(fenParsed.movesCount);
444 this.setOtherVariables(fen);
445 }
446
447 // Scan board for kings positions
448 scanKings(fen) {
449 this.INIT_COL_KING = { w: -1, b: -1 };
450 this.kingPos = { w: [-1, -1], b: [-1, -1] }; //squares of white and black king
451 const fenRows = V.ParseFen(fen).position.split("/");
452 const startRow = { 'w': V.size.x - 1, 'b': 0 };
453 for (let i = 0; i < fenRows.length; i++) {
454 let k = 0; //column index on board
455 for (let j = 0; j < fenRows[i].length; j++) {
456 switch (fenRows[i].charAt(j)) {
457 case "k":
458 this.kingPos["b"] = [i, k];
459 this.INIT_COL_KING["b"] = k;
460 break;
461 case "K":
462 this.kingPos["w"] = [i, k];
463 this.INIT_COL_KING["w"] = k;
464 break;
465 default: {
466 const num = parseInt(fenRows[i].charAt(j));
467 if (!isNaN(num)) k += num - 1;
468 }
469 }
470 k++;
471 }
472 }
473 }
474
475 // Some additional variables from FEN (variant dependant)
476 setOtherVariables(fen) {
477 // Set flags and enpassant:
478 const parsedFen = V.ParseFen(fen);
479 if (V.HasFlags) this.setFlags(parsedFen.flags);
480 if (V.HasEnpassant) {
481 const epSq =
482 parsedFen.enpassant != "-"
483 ? this.getEpSquare(parsedFen.enpassant)
484 : undefined;
485 this.epSquares = [epSq];
486 }
487 // Search for kings positions:
488 this.scanKings(fen);
489 }
490
491 /////////////////////
492 // GETTERS & SETTERS
493
494 static get size() {
495 return { x: 8, y: 8 };
496 }
497
498 // Color of thing on square (i,j). 'undefined' if square is empty
499 getColor(i, j) {
500 return this.board[i][j].charAt(0);
501 }
502
503 // Piece type on square (i,j). 'undefined' if square is empty
504 getPiece(i, j) {
505 return this.board[i][j].charAt(1);
506 }
507
508 // Get opponent color
509 static GetOppCol(color) {
510 return color == "w" ? "b" : "w";
511 }
512
513 // Pieces codes (for a clearer code)
514 static get PAWN() {
515 return "p";
516 }
517 static get ROOK() {
518 return "r";
519 }
520 static get KNIGHT() {
521 return "n";
522 }
523 static get BISHOP() {
524 return "b";
525 }
526 static get QUEEN() {
527 return "q";
528 }
529 static get KING() {
530 return "k";
531 }
532
533 // For FEN checking:
534 static get PIECES() {
535 return [V.PAWN, V.ROOK, V.KNIGHT, V.BISHOP, V.QUEEN, V.KING];
536 }
537
538 // Empty square
539 static get EMPTY() {
540 return "";
541 }
542
543 // Some pieces movements
544 static get steps() {
545 return {
546 r: [
547 [-1, 0],
548 [1, 0],
549 [0, -1],
550 [0, 1]
551 ],
552 n: [
553 [-1, -2],
554 [-1, 2],
555 [1, -2],
556 [1, 2],
557 [-2, -1],
558 [-2, 1],
559 [2, -1],
560 [2, 1]
561 ],
562 b: [
563 [-1, -1],
564 [-1, 1],
565 [1, -1],
566 [1, 1]
567 ]
568 };
569 }
570
571 ////////////////////
572 // MOVES GENERATION
573
574 // All possible moves from selected square
575 getPotentialMovesFrom([x, y]) {
576 switch (this.getPiece(x, y)) {
577 case V.PAWN:
578 return this.getPotentialPawnMoves([x, y]);
579 case V.ROOK:
580 return this.getPotentialRookMoves([x, y]);
581 case V.KNIGHT:
582 return this.getPotentialKnightMoves([x, y]);
583 case V.BISHOP:
584 return this.getPotentialBishopMoves([x, y]);
585 case V.QUEEN:
586 return this.getPotentialQueenMoves([x, y]);
587 case V.KING:
588 return this.getPotentialKingMoves([x, y]);
589 }
590 return []; //never reached
591 }
592
593 // Build a regular move from its initial and destination squares.
594 // tr: transformation
595 getBasicMove([sx, sy], [ex, ey], tr) {
596 let mv = new Move({
597 appear: [
598 new PiPo({
599 x: ex,
600 y: ey,
601 c: tr ? tr.c : this.getColor(sx, sy),
602 p: tr ? tr.p : this.getPiece(sx, sy)
603 })
604 ],
605 vanish: [
606 new PiPo({
607 x: sx,
608 y: sy,
609 c: this.getColor(sx, sy),
610 p: this.getPiece(sx, sy)
611 })
612 ]
613 });
614
615 // The opponent piece disappears if we take it
616 if (this.board[ex][ey] != V.EMPTY) {
617 mv.vanish.push(
618 new PiPo({
619 x: ex,
620 y: ey,
621 c: this.getColor(ex, ey),
622 p: this.getPiece(ex, ey)
623 })
624 );
625 }
626
627 return mv;
628 }
629
630 // Generic method to find possible moves of non-pawn pieces:
631 // "sliding or jumping"
632 getSlideNJumpMoves([x, y], steps, oneStep) {
633 let moves = [];
634 outerLoop: for (let step of steps) {
635 let i = x + step[0];
636 let j = y + step[1];
637 while (V.OnBoard(i, j) && this.board[i][j] == V.EMPTY) {
638 moves.push(this.getBasicMove([x, y], [i, j]));
639 if (oneStep) continue outerLoop;
640 i += step[0];
641 j += step[1];
642 }
643 if (V.OnBoard(i, j) && this.canTake([x, y], [i, j]))
644 moves.push(this.getBasicMove([x, y], [i, j]));
645 }
646 return moves;
647 }
648
649 // What are the pawn moves from square x,y ?
650 getPotentialPawnMoves([x, y]) {
651 const color = this.turn;
652 let moves = [];
653 const [sizeX, sizeY] = [V.size.x, V.size.y];
654 const shiftX = color == "w" ? -1 : 1;
655 const firstRank = color == "w" ? sizeX - 1 : 0;
656 const startRank = color == "w" ? sizeX - 2 : 1;
657 const lastRank = color == "w" ? 0 : sizeX - 1;
658
659 // NOTE: next condition is generally true (no pawn on last rank)
660 if (x + shiftX >= 0 && x + shiftX < sizeX) {
661 const finalPieces =
662 x + shiftX == lastRank
663 ? [V.ROOK, V.KNIGHT, V.BISHOP, V.QUEEN]
664 : [V.PAWN];
665 if (this.board[x + shiftX][y] == V.EMPTY) {
666 // One square forward
667 for (let piece of finalPieces) {
668 moves.push(
669 this.getBasicMove([x, y], [x + shiftX, y], {
670 c: color,
671 p: piece
672 })
673 );
674 }
675 // Next condition because pawns on 1st rank can generally jump
676 if (
677 [startRank, firstRank].includes(x) &&
678 this.board[x + 2 * shiftX][y] == V.EMPTY
679 ) {
680 // Two squares jump
681 moves.push(this.getBasicMove([x, y], [x + 2 * shiftX, y]));
682 }
683 }
684 // Captures
685 for (let shiftY of [-1, 1]) {
686 if (
687 y + shiftY >= 0 &&
688 y + shiftY < sizeY &&
689 this.board[x + shiftX][y + shiftY] != V.EMPTY &&
690 this.canTake([x, y], [x + shiftX, y + shiftY])
691 ) {
692 for (let piece of finalPieces) {
693 moves.push(
694 this.getBasicMove([x, y], [x + shiftX, y + shiftY], {
695 c: color,
696 p: piece
697 })
698 );
699 }
700 }
701 }
702 }
703
704 if (V.HasEnpassant) {
705 // En passant
706 const Lep = this.epSquares.length;
707 const epSquare = this.epSquares[Lep - 1]; //always at least one element
708 if (
709 !!epSquare &&
710 epSquare.x == x + shiftX &&
711 Math.abs(epSquare.y - y) == 1
712 ) {
713 let enpassantMove = this.getBasicMove([x, y], [epSquare.x, epSquare.y]);
714 enpassantMove.vanish.push({
715 x: x,
716 y: epSquare.y,
717 p: "p",
718 c: this.getColor(x, epSquare.y)
719 });
720 moves.push(enpassantMove);
721 }
722 }
723
724 return moves;
725 }
726
727 // What are the rook moves from square x,y ?
728 getPotentialRookMoves(sq) {
729 return this.getSlideNJumpMoves(sq, V.steps[V.ROOK]);
730 }
731
732 // What are the knight moves from square x,y ?
733 getPotentialKnightMoves(sq) {
734 return this.getSlideNJumpMoves(sq, V.steps[V.KNIGHT], "oneStep");
735 }
736
737 // What are the bishop moves from square x,y ?
738 getPotentialBishopMoves(sq) {
739 return this.getSlideNJumpMoves(sq, V.steps[V.BISHOP]);
740 }
741
742 // What are the queen moves from square x,y ?
743 getPotentialQueenMoves(sq) {
744 return this.getSlideNJumpMoves(
745 sq,
746 V.steps[V.ROOK].concat(V.steps[V.BISHOP])
747 );
748 }
749
750 // What are the king moves from square x,y ?
751 getPotentialKingMoves(sq) {
752 // Initialize with normal moves
753 const moves = this.getSlideNJumpMoves(
754 sq,
755 V.steps[V.ROOK].concat(V.steps[V.BISHOP]),
756 "oneStep"
757 );
758 return moves.concat(this.getCastleMoves(sq));
759 }
760
761 getCastleMoves([x, y]) {
762 const c = this.getColor(x, y);
763 if (x != (c == "w" ? V.size.x - 1 : 0) || y != this.INIT_COL_KING[c])
764 return []; //x isn't first rank, or king has moved (shortcut)
765
766 // Castling ?
767 const oppCol = V.GetOppCol(c);
768 let moves = [];
769 let i = 0;
770 // King, then rook:
771 const finalSquares = [
772 [2, 3],
773 [V.size.y - 2, V.size.y - 3]
774 ];
775 castlingCheck: for (
776 let castleSide = 0;
777 castleSide < 2;
778 castleSide++ //large, then small
779 ) {
780 if (this.castleFlags[c][castleSide] >= V.size.y) continue;
781 // If this code is reached, rooks and king are on initial position
782
783 // Nothing on the path of the king ? (and no checks)
784 const finDist = finalSquares[castleSide][0] - y;
785 let step = finDist / Math.max(1, Math.abs(finDist));
786 i = y;
787 do {
788 if (
789 this.isAttacked([x, i], [oppCol]) ||
790 (this.board[x][i] != V.EMPTY &&
791 // NOTE: next check is enough, because of chessboard constraints
792 (this.getColor(x, i) != c ||
793 ![V.KING, V.ROOK].includes(this.getPiece(x, i))))
794 ) {
795 continue castlingCheck;
796 }
797 i += step;
798 } while (i != finalSquares[castleSide][0]);
799
800 // Nothing on the path to the rook?
801 step = castleSide == 0 ? -1 : 1;
802 const rookPos = this.castleFlags[c][castleSide];
803 for (i = y + step; i != rookPos; i += step) {
804 if (this.board[x][i] != V.EMPTY) continue castlingCheck;
805 }
806
807 // Nothing on final squares, except maybe king and castling rook?
808 for (i = 0; i < 2; i++) {
809 if (
810 this.board[x][finalSquares[castleSide][i]] != V.EMPTY &&
811 this.getPiece(x, finalSquares[castleSide][i]) != V.KING &&
812 finalSquares[castleSide][i] != rookPos
813 ) {
814 continue castlingCheck;
815 }
816 }
817
818 // If this code is reached, castle is valid
819 moves.push(
820 new Move({
821 appear: [
822 new PiPo({ x: x, y: finalSquares[castleSide][0], p: V.KING, c: c }),
823 new PiPo({ x: x, y: finalSquares[castleSide][1], p: V.ROOK, c: c })
824 ],
825 vanish: [
826 new PiPo({ x: x, y: y, p: V.KING, c: c }),
827 new PiPo({ x: x, y: rookPos, p: V.ROOK, c: c })
828 ],
829 end:
830 Math.abs(y - rookPos) <= 2
831 ? { x: x, y: rookPos }
832 : { x: x, y: y + 2 * (castleSide == 0 ? -1 : 1) }
833 })
834 );
835 }
836
837 return moves;
838 }
839
840 ////////////////////
841 // MOVES VALIDATION
842
843 // For the interface: possible moves for the current turn from square sq
844 getPossibleMovesFrom(sq) {
845 return this.filterValid(this.getPotentialMovesFrom(sq));
846 }
847
848 // TODO: promotions (into R,B,N,Q) should be filtered only once
849 filterValid(moves) {
850 if (moves.length == 0) return [];
851 const color = this.turn;
852 return moves.filter(m => {
853 this.play(m);
854 const res = !this.underCheck(color);
855 this.undo(m);
856 return res;
857 });
858 }
859
860 // Search for all valid moves considering current turn
861 // (for engine and game end)
862 getAllValidMoves() {
863 const color = this.turn;
864 let potentialMoves = [];
865 for (let i = 0; i < V.size.x; i++) {
866 for (let j = 0; j < V.size.y; j++) {
867 if (this.getColor(i, j) == color) {
868 Array.prototype.push.apply(
869 potentialMoves,
870 this.getPotentialMovesFrom([i, j])
871 );
872 }
873 }
874 }
875 return this.filterValid(potentialMoves);
876 }
877
878 // Stop at the first move found
879 atLeastOneMove() {
880 const color = this.turn;
881 for (let i = 0; i < V.size.x; i++) {
882 for (let j = 0; j < V.size.y; j++) {
883 if (this.getColor(i, j) == color) {
884 const moves = this.getPotentialMovesFrom([i, j]);
885 if (moves.length > 0) {
886 for (let k = 0; k < moves.length; k++) {
887 if (this.filterValid([moves[k]]).length > 0) return true;
888 }
889 }
890 }
891 }
892 }
893 return false;
894 }
895
896 // Check if pieces of color in 'colors' are attacking (king) on square x,y
897 isAttacked(sq, colors) {
898 return (
899 this.isAttackedByPawn(sq, colors) ||
900 this.isAttackedByRook(sq, colors) ||
901 this.isAttackedByKnight(sq, colors) ||
902 this.isAttackedByBishop(sq, colors) ||
903 this.isAttackedByQueen(sq, colors) ||
904 this.isAttackedByKing(sq, colors)
905 );
906 }
907
908 // Generic method for non-pawn pieces ("sliding or jumping"):
909 // is x,y attacked by a piece of color in array 'colors' ?
910 isAttackedBySlideNJump([x, y], colors, piece, steps, oneStep) {
911 for (let step of steps) {
912 let rx = x + step[0],
913 ry = y + step[1];
914 while (V.OnBoard(rx, ry) && this.board[rx][ry] == V.EMPTY && !oneStep) {
915 rx += step[0];
916 ry += step[1];
917 }
918 if (
919 V.OnBoard(rx, ry) &&
920 this.getPiece(rx, ry) === piece &&
921 colors.includes(this.getColor(rx, ry))
922 ) {
923 return true;
924 }
925 }
926 return false;
927 }
928
929 // Is square x,y attacked by 'colors' pawns ?
930 isAttackedByPawn([x, y], colors) {
931 for (let c of colors) {
932 const pawnShift = c == "w" ? 1 : -1;
933 if (x + pawnShift >= 0 && x + pawnShift < V.size.x) {
934 for (let i of [-1, 1]) {
935 if (
936 y + i >= 0 &&
937 y + i < V.size.y &&
938 this.getPiece(x + pawnShift, y + i) == V.PAWN &&
939 this.getColor(x + pawnShift, y + i) == c
940 ) {
941 return true;
942 }
943 }
944 }
945 }
946 return false;
947 }
948
949 // Is square x,y attacked by 'colors' rooks ?
950 isAttackedByRook(sq, colors) {
951 return this.isAttackedBySlideNJump(sq, colors, V.ROOK, V.steps[V.ROOK]);
952 }
953
954 // Is square x,y attacked by 'colors' knights ?
955 isAttackedByKnight(sq, colors) {
956 return this.isAttackedBySlideNJump(
957 sq,
958 colors,
959 V.KNIGHT,
960 V.steps[V.KNIGHT],
961 "oneStep"
962 );
963 }
964
965 // Is square x,y attacked by 'colors' bishops ?
966 isAttackedByBishop(sq, colors) {
967 return this.isAttackedBySlideNJump(sq, colors, V.BISHOP, V.steps[V.BISHOP]);
968 }
969
970 // Is square x,y attacked by 'colors' queens ?
971 isAttackedByQueen(sq, colors) {
972 return this.isAttackedBySlideNJump(
973 sq,
974 colors,
975 V.QUEEN,
976 V.steps[V.ROOK].concat(V.steps[V.BISHOP])
977 );
978 }
979
980 // Is square x,y attacked by 'colors' king(s) ?
981 isAttackedByKing(sq, colors) {
982 return this.isAttackedBySlideNJump(
983 sq,
984 colors,
985 V.KING,
986 V.steps[V.ROOK].concat(V.steps[V.BISHOP]),
987 "oneStep"
988 );
989 }
990
991 // Is color under check after his move ?
992 underCheck(color) {
993 return this.isAttacked(this.kingPos[color], [V.GetOppCol(color)]);
994 }
995
996 /////////////////
997 // MOVES PLAYING
998
999 // Apply a move on board
1000 static PlayOnBoard(board, move) {
1001 for (let psq of move.vanish) board[psq.x][psq.y] = V.EMPTY;
1002 for (let psq of move.appear) board[psq.x][psq.y] = psq.c + psq.p;
1003 }
1004 // Un-apply the played move
1005 static UndoOnBoard(board, move) {
1006 for (let psq of move.appear) board[psq.x][psq.y] = V.EMPTY;
1007 for (let psq of move.vanish) board[psq.x][psq.y] = psq.c + psq.p;
1008 }
1009
1010 prePlay() {}
1011
1012 play(move) {
1013 // DEBUG:
1014 // if (!this.states) this.states = [];
1015 // const stateFen = this.getBaseFen() + this.getTurnFen();// + this.getFlagsFen();
1016 // this.states.push(stateFen);
1017
1018 this.prePlay(move);
1019 if (V.HasFlags) move.flags = JSON.stringify(this.aggregateFlags()); //save flags (for undo)
1020 if (V.HasEnpassant) this.epSquares.push(this.getEpSquare(move));
1021 V.PlayOnBoard(this.board, move);
1022 this.turn = V.GetOppCol(this.turn);
1023 this.movesCount++;
1024 this.postPlay(move);
1025 }
1026
1027 // After move is played, update variables + flags
1028 postPlay(move) {
1029 const c = V.GetOppCol(this.turn);
1030 let piece = undefined;
1031 if (move.vanish.length >= 1)
1032 // Usual case, something is moved
1033 piece = move.vanish[0].p;
1034 else
1035 // Crazyhouse-like variants
1036 piece = move.appear[0].p;
1037 const firstRank = c == "w" ? V.size.x - 1 : 0;
1038
1039 // Update king position + flags
1040 if (piece == V.KING && move.appear.length > 0) {
1041 this.kingPos[c][0] = move.appear[0].x;
1042 this.kingPos[c][1] = move.appear[0].y;
1043 if (V.HasCastle) this.castleFlags[c] = [V.size.y, V.size.y];
1044 return;
1045 }
1046 if (V.HasCastle) {
1047 // Update castling flags if rooks are moved
1048 const oppCol = V.GetOppCol(c);
1049 const oppFirstRank = V.size.x - 1 - firstRank;
1050 if (
1051 move.start.x == firstRank && //our rook moves?
1052 this.castleFlags[c].includes(move.start.y)
1053 ) {
1054 const flagIdx = (move.start.y == this.castleFlags[c][0] ? 0 : 1);
1055 this.castleFlags[c][flagIdx] = V.size.y;
1056 } else if (
1057 move.end.x == oppFirstRank && //we took opponent rook?
1058 this.castleFlags[oppCol].includes(move.end.y)
1059 ) {
1060 const flagIdx = (move.end.y == this.castleFlags[oppCol][0] ? 0 : 1);
1061 this.castleFlags[oppCol][flagIdx] = V.size.y;
1062 }
1063 }
1064 }
1065
1066 preUndo() {}
1067
1068 undo(move) {
1069 this.preUndo(move);
1070 if (V.HasEnpassant) this.epSquares.pop();
1071 if (V.HasFlags) this.disaggregateFlags(JSON.parse(move.flags));
1072 V.UndoOnBoard(this.board, move);
1073 this.turn = V.GetOppCol(this.turn);
1074 this.movesCount--;
1075 this.postUndo(move);
1076
1077 // DEBUG:
1078 // const stateFen = this.getBaseFen() + this.getTurnFen();// + this.getFlagsFen();
1079 // if (stateFen != this.states[this.states.length-1]) debugger;
1080 // this.states.pop();
1081 }
1082
1083 // After move is undo-ed *and flags resetted*, un-update other variables
1084 // TODO: more symmetry, by storing flags increment in move (?!)
1085 postUndo(move) {
1086 // (Potentially) Reset king position
1087 const c = this.getColor(move.start.x, move.start.y);
1088 if (this.getPiece(move.start.x, move.start.y) == V.KING)
1089 this.kingPos[c] = [move.start.x, move.start.y];
1090 }
1091
1092 ///////////////
1093 // END OF GAME
1094
1095 // What is the score ? (Interesting if game is over)
1096 getCurrentScore() {
1097 if (this.atLeastOneMove())
1098 return "*";
1099
1100 // Game over
1101 const color = this.turn;
1102 // No valid move: stalemate or checkmate?
1103 if (!this.isAttacked(this.kingPos[color], [V.GetOppCol(color)]))
1104 return "1/2";
1105 // OK, checkmate
1106 return color == "w" ? "0-1" : "1-0";
1107 }
1108
1109 ///////////////
1110 // ENGINE PLAY
1111
1112 // Pieces values
1113 static get VALUES() {
1114 return {
1115 p: 1,
1116 r: 5,
1117 n: 3,
1118 b: 3,
1119 q: 9,
1120 k: 1000
1121 };
1122 }
1123
1124 // "Checkmate" (unreachable eval)
1125 static get INFINITY() {
1126 return 9999;
1127 }
1128
1129 // At this value or above, the game is over
1130 static get THRESHOLD_MATE() {
1131 return V.INFINITY;
1132 }
1133
1134 // Search depth: 2 for high branching factor, 4 for small (Loser chess, eg.)
1135 static get SEARCH_DEPTH() {
1136 return 3;
1137 }
1138
1139 getComputerMove() {
1140 const maxeval = V.INFINITY;
1141 const color = this.turn;
1142 let moves1 = this.getAllValidMoves();
1143
1144 if (moves1.length == 0)
1145 // TODO: this situation should not happen
1146 return null;
1147
1148 // Rank moves using a min-max at depth 2 (if search_depth >= 2!)
1149 for (let i = 0; i < moves1.length; i++) {
1150 this.play(moves1[i]);
1151 const score1 = this.getCurrentScore();
1152 if (score1 != "*") {
1153 moves1[i].eval =
1154 score1 == "1/2"
1155 ? 0
1156 : (score1 == "1-0" ? 1 : -1) * maxeval;
1157 }
1158 if (V.SEARCH_DEPTH == 1 || score1 != "*") {
1159 if (!moves1[i].eval) moves1[i].eval = this.evalPosition();
1160 this.undo(moves1[i]);
1161 continue;
1162 }
1163 // Initial self evaluation is very low: "I'm checkmated"
1164 moves1[i].eval = (color == "w" ? -1 : 1) * maxeval;
1165 // Initial enemy evaluation is very low too, for him
1166 let eval2 = (color == "w" ? 1 : -1) * maxeval;
1167 // Second half-move:
1168 let moves2 = this.getAllValidMoves();
1169 for (let j = 0; j < moves2.length; j++) {
1170 this.play(moves2[j]);
1171 const score2 = this.getCurrentScore();
1172 let evalPos = 0; //1/2 value
1173 switch (score2) {
1174 case "*":
1175 evalPos = this.evalPosition();
1176 break;
1177 case "1-0":
1178 evalPos = maxeval;
1179 break;
1180 case "0-1":
1181 evalPos = -maxeval;
1182 break;
1183 }
1184 if (
1185 (color == "w" && evalPos < eval2) ||
1186 (color == "b" && evalPos > eval2)
1187 ) {
1188 eval2 = evalPos;
1189 }
1190 this.undo(moves2[j]);
1191 }
1192 if (
1193 (color == "w" && eval2 > moves1[i].eval) ||
1194 (color == "b" && eval2 < moves1[i].eval)
1195 ) {
1196 moves1[i].eval = eval2;
1197 }
1198 this.undo(moves1[i]);
1199 }
1200 moves1.sort((a, b) => {
1201 return (color == "w" ? 1 : -1) * (b.eval - a.eval);
1202 });
1203 // console.log(moves1.map(m => { return [this.getNotation(m), m.eval]; }));
1204
1205 // Skip depth 3+ if we found a checkmate (or if we are checkmated in 1...)
1206 if (V.SEARCH_DEPTH >= 3 && Math.abs(moves1[0].eval) < V.THRESHOLD_MATE) {
1207 for (let i = 0; i < moves1.length; i++) {
1208 this.play(moves1[i]);
1209 // 0.1 * oldEval : heuristic to avoid some bad moves (not all...)
1210 moves1[i].eval =
1211 0.1 * moves1[i].eval +
1212 this.alphabeta(V.SEARCH_DEPTH - 1, -maxeval, maxeval);
1213 this.undo(moves1[i]);
1214 }
1215 moves1.sort((a, b) => {
1216 return (color == "w" ? 1 : -1) * (b.eval - a.eval);
1217 });
1218 }
1219
1220 let candidates = [0];
1221 for (let j = 1; j < moves1.length && moves1[j].eval == moves1[0].eval; j++)
1222 candidates.push(j);
1223 return moves1[candidates[randInt(candidates.length)]];
1224 }
1225
1226 alphabeta(depth, alpha, beta) {
1227 const maxeval = V.INFINITY;
1228 const color = this.turn;
1229 const score = this.getCurrentScore();
1230 if (score != "*")
1231 return score == "1/2" ? 0 : (score == "1-0" ? 1 : -1) * maxeval;
1232 if (depth == 0) return this.evalPosition();
1233 const moves = this.getAllValidMoves();
1234 let v = color == "w" ? -maxeval : maxeval;
1235 if (color == "w") {
1236 for (let i = 0; i < moves.length; i++) {
1237 this.play(moves[i]);
1238 v = Math.max(v, this.alphabeta(depth - 1, alpha, beta));
1239 this.undo(moves[i]);
1240 alpha = Math.max(alpha, v);
1241 if (alpha >= beta) break; //beta cutoff
1242 }
1243 }
1244 else {
1245 // color=="b"
1246 for (let i = 0; i < moves.length; i++) {
1247 this.play(moves[i]);
1248 v = Math.min(v, this.alphabeta(depth - 1, alpha, beta));
1249 this.undo(moves[i]);
1250 beta = Math.min(beta, v);
1251 if (alpha >= beta) break; //alpha cutoff
1252 }
1253 }
1254 return v;
1255 }
1256
1257 evalPosition() {
1258 let evaluation = 0;
1259 // Just count material for now
1260 for (let i = 0; i < V.size.x; i++) {
1261 for (let j = 0; j < V.size.y; j++) {
1262 if (this.board[i][j] != V.EMPTY) {
1263 const sign = this.getColor(i, j) == "w" ? 1 : -1;
1264 evaluation += sign * V.VALUES[this.getPiece(i, j)];
1265 }
1266 }
1267 }
1268 return evaluation;
1269 }
1270
1271 /////////////////////////
1272 // MOVES + GAME NOTATION
1273 /////////////////////////
1274
1275 // Context: just before move is played, turn hasn't changed
1276 // TODO: un-ambiguous notation (switch on piece type, check directions...)
1277 getNotation(move) {
1278 if (move.appear.length == 2 && move.appear[0].p == V.KING)
1279 // Castle
1280 return move.end.y < move.start.y ? "0-0-0" : "0-0";
1281
1282 // Translate final square
1283 const finalSquare = V.CoordsToSquare(move.end);
1284
1285 const piece = this.getPiece(move.start.x, move.start.y);
1286 if (piece == V.PAWN) {
1287 // Pawn move
1288 let notation = "";
1289 if (move.vanish.length > move.appear.length) {
1290 // Capture
1291 const startColumn = V.CoordToColumn(move.start.y);
1292 notation = startColumn + "x" + finalSquare;
1293 }
1294 else notation = finalSquare;
1295 if (move.appear.length > 0 && move.appear[0].p != V.PAWN)
1296 // Promotion
1297 notation += "=" + move.appear[0].p.toUpperCase();
1298 return notation;
1299 }
1300 // Piece movement
1301 return (
1302 piece.toUpperCase() +
1303 (move.vanish.length > move.appear.length ? "x" : "") +
1304 finalSquare
1305 );
1306 }
1307 };