Commit | Line | Data |
---|---|---|
0ba1b11c | 1 | #' Plot |
3453829e BA |
2 | #' |
3 | #' It is a function which plots relevant parameters | |
4 | #' | |
5 | #' @param X matrix of covariates (of size n*p) | |
6 | #' @param Y matrix of responses (of size n*m) | |
7 | #' @param model the model constructed by valse procedure | |
1196a43d BA |
8 | #' @param comp TRUE to enable pairwise clusters comparison |
9 | #' @param k1 index of the first cluster to be compared | |
10 | #' @param k2 index of the second cluster to be compared | |
11 | #' | |
12 | #' @importFrom ggplot2 ggplot aes ggtitle geom_tile geom_line geom_point scale_fill_gradient2 geom_boxplot theme | |
13 | #' @importFrom cowplot background_grid | |
14 | #' @importFrom reshape2 melt | |
3453829e | 15 | #' |
3453829e | 16 | #' @export |
3921ba9b | 17 | plot_valse <- function(X, Y, model, comp = FALSE, k1 = NA, k2 = NA) |
3453829e | 18 | { |
3921ba9b | 19 | n <- nrow(X) |
3453829e BA |
20 | K <- length(model$pi) |
21 | ## regression matrices | |
22 | gReg <- list() | |
23 | for (r in 1:K) | |
24 | { | |
25 | Melt <- melt(t((model$phi[, , r]))) | |
206dfd5d | 26 | gReg[[r]] <- ggplot(data = Melt, aes(x = Var1, y = Var2, fill = value)) + |
0ba1b11c | 27 | geom_tile() + scale_fill_gradient2(low = "blue", high = "red", mid = "white", |
3453829e BA |
28 | midpoint = 0, space = "Lab") + ggtitle(paste("Regression matrices in cluster", r)) |
29 | } | |
30 | print(gReg) | |
31 | ||
32 | ## Differences between two clusters | |
33 | if (comp) | |
34 | { | |
1196a43d | 35 | if (is.na(k1) || is.na(k2)) |
3453829e BA |
36 | print("k1 and k2 must be integers, representing the clusters you want to compare") |
37 | Melt <- melt(t(model$phi[, , k1] - model$phi[, , k2])) | |
206dfd5d | 38 | gDiff <- ggplot(data = Melt, aes(x = Var1, y = Var2, fill = value)) + |
39 | geom_tile() + scale_fill_gradient2(low = "blue", high = "red", mid = "white", midpoint = 0, | |
40 | space = "Lab") + ggtitle(paste("Difference between regression matrices in cluster", | |
3453829e BA |
41 | k1, "and", k2)) |
42 | print(gDiff) | |
43 | } | |
44 | ||
45 | ### Covariance matrices | |
46 | matCov <- matrix(NA, nrow = dim(model$rho[, , 1])[1], ncol = K) | |
47 | for (r in 1:K) | |
48 | matCov[, r] <- diag(model$rho[, , r]) | |
49 | MeltCov <- melt(matCov) | |
206dfd5d | 50 | gCov <- ggplot(data = MeltCov, aes(x = Var1, y = Var2, fill = value)) + geom_tile() + |
51 | scale_fill_gradient2(low = "blue", high = "red", mid = "white", midpoint = 0, | |
52 | space = "Lab") + ggtitle("Covariance matrices (diag., one row per cluster)") | |
3453829e BA |
53 | print(gCov) |
54 | ||
55 | ### Proportions | |
56 | gam2 <- matrix(NA, ncol = K, nrow = n) | |
57 | for (i in 1:n) | |
58 | gam2[i, ] <- c(model$proba[i, model$affec[i]], model$affec[i]) | |
59 | ||
206dfd5d | 60 | bp <- ggplot(data.frame(gam2), aes(x = X2, y = X1, color = X2, group = X2)) + geom_boxplot() + |
61 | theme(legend.position = "none") + background_grid(major = "xy", minor = "none") + | |
62 | ggtitle("Assignment boxplot per cluster") | |
3453829e | 63 | print(bp) |
3453829e | 64 | } |