Commit | Line | Data |
---|---|---|
3453829e BA |
1 | Package: valse |
2 | Title: Variable Selection With Mixture Of Models | |
0ba1b11c | 3 | Date: 2020-01-11 |
3453829e BA |
4 | Version: 0.1-0 |
5 | Description: Two methods are implemented to cluster data with finite mixture | |
6 | regression models. Those procedures deal with high-dimensional covariates and | |
7 | responses through a variable selection procedure based on the Lasso estimator. | |
8 | A low-rank constraint could be added, computed for the Lasso-Rank procedure. | |
9 | A collection of models is constructed, varying the level of sparsity and the | |
10 | number of clusters, and a model is selected using a model selection criterion | |
11 | (slope heuristic, BIC or AIC). Details of the procedure are provided in 'Model- | |
12 | based clustering for high-dimensional data. Application to functional data' by | |
13 | Emilie Devijver, published in Advances in Data Analysis and Clustering (2016). | |
0ba1b11c | 14 | Author: Benjamin Auder <benjamin.auder@universite-paris-saclay.fr> [aut,cre], |
3453829e BA |
15 | Emilie Devijver <Emilie.Devijver@kuleuven.be> [aut], |
16 | Benjamin Goehry <Benjamin.Goehry@math.u-psud.fr> [aut] | |
0ba1b11c | 17 | Maintainer: Benjamin Auder <benjamin.auder@universite-paris-saclay.fr> |
3453829e | 18 | Depends: |
0ba1b11c | 19 | R (>= 3.5.0) |
3453829e BA |
20 | Imports: |
21 | MASS, | |
22 | parallel | |
23 | Suggests: | |
24 | capushe, | |
25 | methods, | |
26 | roxygen2, | |
27 | testthat | |
28 | URL: http://git.auder.net/?p=valse.git | |
29 | License: MIT + file LICENSE | |
6775f5b9 | 30 | RoxygenNote: 7.0.2 |
3453829e BA |
31 | Collate: |
32 | 'plot_valse.R' | |
33 | 'main.R' | |
34 | 'selectVariables.R' | |
35 | 'constructionModelesLassoRank.R' | |
36 | 'constructionModelesLassoMLE.R' | |
37 | 'computeGridLambda.R' | |
38 | 'initSmallEM.R' | |
39 | 'EMGrank.R' | |
40 | 'EMGLLF.R' | |
41 | 'generateXY.R' | |
42 | 'A_NAMESPACE.R' | |
43 | 'util.R' |