save state: wrong idea for indices repartition
[epclust.git] / epclust / tests / testthat / test.clustering.R
CommitLineData
56857861
BA
1context("clustering")
2
8702eb86
BA
3#shorthand: map 1->1, 2->2, 3->3, 4->1, ..., 149->2, 150->3, ... (is base==3)
4I = function(i, base)
5 (i-1) %% base + 1
56857861 6
e161499b 7test_that("computeClusters1&2 behave as expected",
56857861 8{
8702eb86 9 require("MASS", quietly=TRUE)
4bcfdbee
BA
10 if (!require("clue", quietly=TRUE))
11 skip("'clue' package not available")
56857861 12
8702eb86
BA
13 # 3 gaussian clusters, 300 items; and then 7 gaussian clusters, 490 items
14 n = 300
15 d = 5
16 K = 3
17 for (ndK in list( c(300,5,3), c(490,10,7) ))
18 {
19 n = ndK[1] ; d = ndK[2] ; K = ndK[3]
20 cs = n/K #cluster size
21 Id = diag(d)
37c82bba 22 coefs = sapply(1:K, function(i) MASS::mvrnorm(cs, c(rep(0,(i-1)),5,rep(0,d-i)), Id))
e161499b
BA
23 indices_medoids1 = computeClusters1(coefs, K, verbose=TRUE)
24 indices_medoids2 = computeClusters2(dist(coefs), K, verbose=TRUE)
8702eb86 25 # Get coefs assignments (to medoids)
e161499b 26 assignment1 = sapply(seq_len(n), function(i)
37c82bba 27 which.min( colSums( sweep(coefs[,indices_medoids1],1,coefs[,i],'-')^2 ) ) )
e161499b 28 assignment2 = sapply(seq_len(n), function(i)
37c82bba 29 which.min( colSums( sweep(coefs[,indices_medoids2],1,coefs[,i],'-')^2 ) ) )
8702eb86 30 for (i in 1:K)
e161499b
BA
31 {
32 expect_equal(sum(assignment1==i), cs, tolerance=5)
33 expect_equal(sum(assignment2==i), cs, tolerance=5)
34 }
8702eb86 35
e161499b
BA
36 costs_matrix1 = matrix(nrow=K,ncol=K)
37 costs_matrix2 = matrix(nrow=K,ncol=K)
8702eb86
BA
38 for (i in 1:K)
39 {
40 for (j in 1:K)
41 {
42 # assign i (in result) to j (order 1,2,3)
e161499b
BA
43 costs_matrix1[i,j] = abs( mean(assignment1[((i-1)*cs+1):(i*cs)]) - j )
44 costs_matrix2[i,j] = abs( mean(assignment2[((i-1)*cs+1):(i*cs)]) - j )
8702eb86
BA
45 }
46 }
e161499b
BA
47 permutation1 = as.integer( clue::solve_LSAP(costs_matrix1) )
48 permutation2 = as.integer( clue::solve_LSAP(costs_matrix2) )
8702eb86
BA
49 for (i in 1:K)
50 {
51 expect_equal(
e161499b
BA
52 mean(assignment1[((i-1)*cs+1):(i*cs)]), permutation1[i], tolerance=0.05)
53 expect_equal(
54 mean(assignment2[((i-1)*cs+1):(i*cs)]), permutation2[i], tolerance=0.05)
8702eb86
BA
55 }
56 }
56857861
BA
57})
58
59test_that("computeSynchrones behave as expected",
60{
8702eb86
BA
61 n = 300
62 x = seq(0,9.5,0.1)
63 L = length(x) #96 1/4h
64 K = 3
65 s1 = cos(x)
66 s2 = sin(x)
67 s3 = c( s1[1:(L%/%2)] , s2[(L%/%2+1):L] )
68 #sum((s1-s2)^2) == 96
69 #sum((s1-s3)^2) == 58
70 #sum((s2-s3)^2) == 38
71 s = list(s1, s2, s3)
37c82bba 72 series = matrix(nrow=L, ncol=n)
8702eb86 73 for (i in seq_len(n))
37c82bba 74 series[,i] = s[[I(i,K)]] + rnorm(L,sd=0.01)
8702eb86 75 getRefSeries = function(indices) {
492cd9e7 76 indices = indices[indices <= n]
37c82bba 77 if (length(indices)>0) series[,indices] else NULL
8702eb86 78 }
37c82bba 79 synchrones = computeSynchrones(bigmemory::as.big.matrix(cbind(s1,s2,s3)), getRefSeries,
e161499b 80 n, 100, verbose=TRUE, parll=FALSE)
56857861 81
37c82bba 82 expect_equal(dim(synchrones), c(L,K))
8702eb86 83 for (i in 1:K)
37c82bba 84 expect_equal(synchrones[,i], s[[i]], tolerance=0.01)
56857861
BA
85})
86
e161499b 87# NOTE: medoids can be a big.matrix
8702eb86
BA
88computeDistortion = function(series, medoids)
89{
90 n = nrow(series) ; L = ncol(series)
91 distortion = 0.
e161499b
BA
92 if (bigmemory::is.big.matrix(medoids))
93 medoids = medoids[,]
8702eb86 94 for (i in seq_len(n))
37c82bba 95 distortion = distortion + min( colSums( sweep(medoids,1,series[,i],'-')^2 ) / L )
8702eb86
BA
96 distortion / n
97}
98
e161499b 99test_that("clusteringTask1 behave as expected",
56857861 100{
8702eb86
BA
101 n = 900
102 x = seq(0,9.5,0.1)
103 L = length(x) #96 1/4h
104 K1 = 60
8702eb86
BA
105 s = lapply( seq_len(K1), function(i) x^(1+i/30)*cos(x+i) )
106 series = matrix(nrow=n, ncol=L)
107 for (i in seq_len(n))
37c82bba 108 series[,i] = s[[I(i,K1)]] + rnorm(L,sd=0.01)
e161499b 109 getSeries = function(indices) {
492cd9e7 110 indices = indices[indices <= n]
37c82bba 111 if (length(indices)>0) series[,indices] else NULL
8702eb86 112 }
e161499b
BA
113 wf = "haar"
114 ctype = "absolute"
37c82bba 115 getContribs = function(indices) curvesToContribs(series[,indices],wf,ctype)
e161499b
BA
116 indices1 = clusteringTask1(1:n, getContribs, K1, 75, verbose=TRUE, parll=FALSE)
117 medoids_K1 = getSeries(indices1)
56857861 118
37c82bba 119 expect_equal(dim(medoids_K1), c(L,K1))
8702eb86 120 # Not easy to evaluate result: at least we expect it to be better than random selection of
e161499b
BA
121 # medoids within initial series
122 distorGood = computeDistortion(series, medoids_K1)
8702eb86 123 for (i in 1:3)
37c82bba 124 expect_lte( distorGood, computeDistortion(series,series[,sample(1:n, K1)]) )
56857861
BA
125})
126
e161499b 127test_that("clusteringTask2 behave as expected",
56857861 128{
8702eb86
BA
129 n = 900
130 x = seq(0,9.5,0.1)
131 L = length(x) #96 1/4h
132 K1 = 60
133 K2 = 3
e161499b 134 #for (i in 1:60) {plot(x^(1+i/30)*cos(x+i),type="l",col=i,ylim=c(-50,50)); par(new=TRUE)}
8702eb86
BA
135 s = lapply( seq_len(K1), function(i) x^(1+i/30)*cos(x+i) )
136 series = matrix(nrow=n, ncol=L)
137 for (i in seq_len(n))
138 series[i,] = s[[I(i,K1)]] + rnorm(L,sd=0.01)
e161499b 139 getRefSeries = function(indices) {
8702eb86 140 indices = indices[indices <= n]
37c82bba 141 if (length(indices)>0) series[,indices] else NULL
8702eb86 142 }
e161499b 143 # Artificially simulate 60 medoids - perfect situation, all equal to one of the refs
37c82bba 144 medoids_K1 = bigmemory::as.big.matrix( sapply( 1:K1, function(i) s[[I(i,K1)]] ) )
e161499b 145 medoids_K2 = clusteringTask2(medoids_K1, K2, getRefSeries, n, 75, verbose=TRUE, parll=FALSE)
56857861 146
37c82bba 147 expect_equal(dim(medoids_K2), c(L,K2))
8702eb86
BA
148 # Not easy to evaluate result: at least we expect it to be better than random selection of
149 # medoids within 1...K1 (among references)
150 distorGood = computeDistortion(series, medoids_K2)
151 for (i in 1:3)
37c82bba 152 expect_lte( distorGood, computeDistortion(series,medoids_K1[,sample(1:K1, K2)]) )
56857861 153})
e161499b
BA
154
155#NOTE: rather redundant test
156#test_that("clusteringTask1 + clusteringTask2 behave as expected",
157#{
158# n = 900
159# x = seq(0,9.5,0.1)
160# L = length(x) #96 1/4h
161# K1 = 60
162# K2 = 3
163# s = lapply( seq_len(K1), function(i) x^(1+i/30)*cos(x+i) )
164# series = matrix(nrow=n, ncol=L)
165# for (i in seq_len(n))
166# series[i,] = s[[I(i,K1)]] + rnorm(L,sd=0.01)
167# getSeries = function(indices) {
168# indices = indices[indices <= n]
169# if (length(indices)>0) series[indices,] else NULL
170# }
171# wf = "haar"
172# ctype = "absolute"
173# getContribs = function(indices) curvesToContribs(series[indices,],wf,ctype)
174# require("bigmemory", quietly=TRUE)
175# indices1 = clusteringTask1(1:n, getContribs, K1, 75, verbose=TRUE, parll=FALSE)
176# medoids_K1 = bigmemory::as.big.matrix( getSeries(indices1) )
177# medoids_K2 = clusteringTask2(medoids_K1, K2, getSeries, n, 120, verbose=TRUE, parll=FALSE)
178#
179# expect_equal(dim(medoids_K1), c(K1,L))
180# expect_equal(dim(medoids_K2), c(K2,L))
181# # Not easy to evaluate result: at least we expect it to be better than random selection of
182# # medoids within 1...K1 (among references)
183# distorGood = computeDistortion(series, medoids_K2)
184# for (i in 1:3)
185# expect_lte( distorGood, computeDistortion(series,medoids_K1[sample(1:K1, K2),]) )
186#})