Commit | Line | Data |
---|---|---|
7f0781b7 BA |
1 | #' @title Cluster power curves with PAM in parallel |
2 | #' | |
3 | #' @description Groups electricity power curves (or any series of similar nature) by applying PAM | |
cea14f3a | 4 | #' algorithm in parallel to chunks of size \code{nb_series_per_chunk} |
7f0781b7 BA |
5 | #' |
6 | #' @param data Access to the data, which can be of one of the three following types: | |
7 | #' \itemize{ | |
8 | #' \item data.frame: each line contains its ID in the first cell, and all values after | |
9 | #' \item connection: any R connection object (e.g. a file) providing lines as described above | |
c33af7e4 BA |
10 | #' \item function: a custom way to retrieve the curves; it has two arguments: the ranks to be |
11 | #' retrieved, and the IDs - at least one of them must be present (priority: ranks). | |
7f0781b7 | 12 | #' } |
1c6f223e BA |
13 | #' @param K1 Number of super-consumers to be found after stage 1 (K1 << N) |
14 | #' @param K2 Number of clusters to be found after stage 2 (K2 << K1) | |
15 | #' @param ntasks Number of tasks (parallel iterations to obtain K1 medoids); default: 1. | |
16 | #' Note: ntasks << N, so that N is "roughly divisible" by N (number of series) | |
17 | #' @param nb_series_per_chunk (Maximum) number of series in each group, inside a task | |
cea14f3a | 18 | #' @param min_series_per_chunk Minimum number of series in each group |
3465b246 | 19 | #' @param wf Wavelet transform filter; see ?wt.filter. Default: haar |
7f0781b7 BA |
20 | #' @param WER "end" to apply stage 2 after stage 1 has iterated and finished, or "mix" |
21 | #' to apply it after every stage 1 | |
5c652979 BA |
22 | #' @param ncores_tasks "MPI" number of parallel tasks (1 to disable: sequential tasks) |
23 | #' @param ncores_clust "OpenMP" number of parallel clusterings in one task | |
24 | #' @param random Randomize chunks repartition | |
0e2dce80 | 25 | #' @param ... Other arguments to be passed to \code{data} function |
7f0781b7 BA |
26 | #' |
27 | #' @return A data.frame of the final medoids curves (identifiers + values) | |
1c6f223e BA |
28 | #' |
29 | #' @examples | |
30 | #' getData = function(start, n) { | |
31 | #' con = dbConnect(drv = RSQLite::SQLite(), dbname = "mydata.sqlite") | |
32 | #' df = dbGetQuery(con, paste( | |
33 | #' "SELECT * FROM times_values GROUP BY id OFFSET ",start, | |
34 | #' "LIMIT ", n, " ORDER BY date", sep="")) | |
35 | #' return (df) | |
36 | #' } | |
e205f218 | 37 | #' #####TODO: if DB, array rank --> ID at first retrieval, when computing coeffs; so:: NO use of IDs ! |
5c652979 BA |
38 | #' #TODO: 3 examples, data.frame / binary file / DB sqLite |
39 | #' + sampleCurves : wavBootstrap de package wmtsa | |
1c6f223e BA |
40 | #' cl = epclust(getData, K1=200, K2=15, ntasks=1000, nb_series_per_chunk=5000, WER="mix") |
41 | #' @export | |
0e2dce80 BA |
42 | epclust = function(series,K1,K2,ntasks=1,nb_series_per_chunk=50*K1,min_series_per_chunk=5*K1, |
43 | wf="haar",WER="end",ncores_tasks=1,ncores_clust=4,random=TRUE,...) | |
ac1d4231 | 44 | { |
0e2dce80 BA |
45 | # Check/transform arguments |
46 | bin_dir = "epclust.bin/" | |
47 | dir.create(bin_dir, showWarnings=FALSE, mode="0755") | |
48 | if (!is.function(series)) | |
49 | { | |
50 | series_file = paste(bin_dir,"data",sep="") | |
51 | unlink(series_file) | |
52 | } | |
53 | if (is.matrix(series)) | |
54 | serialize(series, series_file) | |
55 | else if (!is.function(series)) | |
5c652979 | 56 | { |
6ecf5c2d BA |
57 | tryCatch( |
58 | { | |
0e2dce80 BA |
59 | if (is.character(series)) |
60 | series_con = file(series, open="r") | |
61 | else if (!isOpen(series)) | |
6ecf5c2d | 62 | { |
0e2dce80 BA |
63 | open(series) |
64 | series_con = series | |
6ecf5c2d | 65 | } |
0e2dce80 BA |
66 | serialize(series_con, series_file) |
67 | close(series_con) | |
6ecf5c2d | 68 | }, |
0e2dce80 | 69 | error=function(e) "series should be a data.frame, a function or a valid connection" |
5c652979 BA |
70 | ) |
71 | } | |
0e2dce80 BA |
72 | if (!is.function(series)) |
73 | series = function(indices) getDataInFile(indices, series_file) | |
74 | getSeries = series | |
75 | ||
5c652979 BA |
76 | K1 = toInteger(K1, function(x) x>=2) |
77 | K2 = toInteger(K2, function(x) x>=2) | |
c33af7e4 | 78 | ntasks = toInteger(ntasks, function(x) x>=1) |
5c652979 BA |
79 | nb_series_per_chunk = toInteger(nb_series_per_chunk, function(x) x>=K1) |
80 | min_series_per_chunk = toInteger(K1, function(x) x>=K1 && x<=nb_series_per_chunk) | |
81 | ncores_tasks = toInteger(ncores_tasks, function(x) x>=1) | |
82 | ncores_clust = toInteger(ncores_clust, function(x) x>=1) | |
7f0781b7 BA |
83 | if (WER!="end" && WER!="mix") |
84 | stop("WER takes values in {'end','mix'}") | |
ac1d4231 | 85 | |
7b13d0c2 | 86 | # Serialize all wavelets coefficients (+ IDs) onto a file |
0e2dce80 BA |
87 | coefs_file = paste(bin_dir,"coefs",sep="") |
88 | unlink(coefs_file) | |
7f0781b7 | 89 | index = 1 |
cea14f3a | 90 | nb_curves = 0 |
6ecf5c2d | 91 | repeat |
ac1d4231 | 92 | { |
0e2dce80 BA |
93 | series = getSeries((index-1)+seq_len(nb_series_per_chunk)) |
94 | if (is.null(series)) | |
cea14f3a | 95 | break |
0e2dce80 BA |
96 | coeffs_chunk = curvesToCoeffs(series, wf) |
97 | serialize(coeffs_chunk, coefs_file) | |
cea14f3a | 98 | index = index + nb_series_per_chunk |
5c652979 | 99 | nb_curves = nb_curves + nrow(coeffs_chunk) |
8e6accca | 100 | } |
0e2dce80 | 101 | getCoefs = function(indices) getDataInFile(indices, coefs_file) |
8e6accca | 102 | |
5c652979 BA |
103 | if (nb_curves < min_series_per_chunk) |
104 | stop("Not enough data: less rows than min_series_per_chunk!") | |
105 | nb_series_per_task = round(nb_curves / ntasks) | |
106 | if (nb_series_per_task < min_series_per_chunk) | |
107 | stop("Too many tasks: less series in one task than min_series_per_chunk!") | |
ac1d4231 | 108 | |
7b13d0c2 | 109 | # Cluster coefficients in parallel (by nb_series_per_chunk) |
48108c39 BA |
110 | indices = if (random) sample(nb_curves) else seq_len(nb_curves) |
111 | indices_tasks = lapply(seq_len(ntasks), function(i) { | |
5c652979 | 112 | upper_bound = ifelse( i<ntasks, min(nb_series_per_task*i,nb_curves), nb_curves ) |
48108c39 BA |
113 | indices[((i-1)*nb_series_per_task+1):upper_bound] |
114 | }) | |
e205f218 | 115 | cl = parallel::makeCluster(ncores_tasks) |
0e2dce80 | 116 | #1000*K1 (or K2) indices (or NOTHING--> series on file) |
e205f218 BA |
117 | indices = unlist( parallel::parLapply(cl, indices_tasks, function(inds) { |
118 | clusteringTask(inds, getSeries, getSeries, getCoefs, K1, K2*(WER=="mix"), | |
119 | nb_series_per_chunk,ncores_clust,to_file=TRUE) | |
120 | }) ) | |
121 | parallel::stopCluster(cl) | |
3465b246 | 122 | |
e205f218 BA |
123 | getSeriesForSynchrones = getSeries |
124 | synchrones_file = paste(bin_dir,"synchrones",sep="") | |
125 | if (WER=="mix") | |
126 | { | |
127 | indices = seq_len(ntasks*K2) | |
128 | #Now series must be retrieved from synchrones_file | |
129 | getSeries = function(inds) getDataInFile(inds, synchrones_file) | |
130 | #Coefs must be re-computed | |
131 | unlink(coefs_file) | |
132 | index = 1 | |
133 | repeat | |
134 | { | |
135 | series = getSeries((index-1)+seq_len(nb_series_per_chunk)) | |
136 | if (is.null(series)) | |
137 | break | |
138 | coeffs_chunk = curvesToCoeffs(series, wf) | |
139 | serialize(coeffs_chunk, coefs_file) | |
140 | index = index + nb_series_per_chunk | |
141 | } | |
142 | } | |
0e2dce80 BA |
143 | |
144 | # Run step2 on resulting indices or series (from file) | |
e205f218 BA |
145 | clusteringTask(indices, getSeries, getSeriesForSynchrones, getCoefs, K1, K2, |
146 | nb_series_per_chunk, ncores_tasks*ncores_clust, to_file=FALSE) | |
cea14f3a | 147 | } |