if (verbose)
cat(paste("--- Compute WER dists\n", sep=""))
-
-
-
-#TODO: serializer les CWT, les récupérer via getDataInFile
-#--> OK, faut juste stocker comme séries simples de taille delta*ncol (53*17519)
-
-
-
-
n <- nrow(synchrones)
delta <- ncol(synchrones)
#TODO: automatic tune of all these parameters ? (for other users)
Xwer_dist <- bigmemory::big.matrix(nrow=n, ncol=n, type="double")
+ cwt_file = ".epclust_bin/cwt"
+ #TODO: args, nb_per_chunk, nbytes, endian
+
# Generate n(n-1)/2 pairs for WER distances computations
-# pairs = list()
-# V = seq_len(n)
-# for (i in 1:n)
-# {
-# V = V[-1]
-# pairs = c(pairs, lapply(V, function(v) c(i,v)))
-# }
- # Generate "smart" pairs for WER distances computations
pairs = list()
- F = floor(2*n/3)
- for (i in 1:F)
- pairs = c(pairs, lapply((i+1):n, function(v) c(i,v)))
- V = (F+1):n
- for (i in (F+1):(n-1))
+ V = seq_len(n)
+ for (i in 1:n)
{
V = V[-1]
- pairs = c(pairs,
+ pairs = c(pairs, lapply(V, function(v) c(i,v)))
+ }
+
+ computeSaveCWT = function(index)
+ {
+ ts <- scale(ts(synchrones[index,]), center=TRUE, scale=scaled)
+ totts.cwt = Rwave::cwt(ts, totnoct, nvoice, w0, plot=FALSE)
+ ts.cwt = totts.cwt[,s0log:(s0log+noctave*nvoice)]
+ #Normalization
+ sqs <- sqrt(2^(0:(noctave*nvoice)/nvoice)*s0)
+ sqres <- sweep(ts.cwt,2,sqs,'*')
+ res <- sqres / max(Mod(sqres))
+ #TODO: serializer les CWT, les récupérer via getDataInFile ;
+ #--> OK, faut juste stocker comme séries simples de taille delta*ncol (53*17519)
+ binarize(res, cwt_file, 100, ",", nbytes, endian)
+ }
+
+ if (parll)
+ {
+ cl = parallel::makeCluster(ncores_clust)
+ synchrones_desc <- bigmemory::describe(synchrones)
+ Xwer_dist_desc <- bigmemory::describe(Xwer_dist)
+ parallel::clusterExport(cl, varlist=c("synchrones_desc","Xwer_dist_desc","totnoct",
+ "nvoice","w0","s0log","noctave","s0","verbose","getCWT"), envir=environment())
+ }
+
+ #precompute and serialize all CWT
+ ignored <-
+ if (parll)
+ parallel::parLapply(cl, 1:n, computeSaveCWT)
+ else
+ lapply(1:n, computeSaveCWT)
+
+ getCWT = function(index)
+ {
+ #from cwt_file ...
+ }
# Distance between rows i and j
computeDistancesIJ = function(pair)
Xwer_dist <- bigmemory::attach.big.matrix(Xwer_dist_desc)
}
- computeCWT = function(index)
- {
- ts <- scale(ts(synchrones[index,]), center=TRUE, scale=scaled)
- totts.cwt = Rwave::cwt(ts, totnoct, nvoice, w0, plot=FALSE)
- ts.cwt = totts.cwt[,s0log:(s0log+noctave*nvoice)]
- #Normalization
- sqs <- sqrt(2^(0:(noctave*nvoice)/nvoice)*s0)
- sqres <- sweep(ts.cwt,2,sqs,'*')
- sqres / max(Mod(sqres))
- }
-
i = pair[1] ; j = pair[2]
if (verbose && j==i+1)
cat(paste(" Distances (",i,",",j,"), (",i,",",j+1,") ...\n", sep=""))
- cwt_i <- computeCWT(i)
- cwt_j <- computeCWT(j)
+ cwt_i <- getCWT(i)
+ cwt_j <- getCWT(j)
-#print(system.time( {
num <- epclustFilter(Mod(cwt_i * Conj(cwt_j)))
WX <- epclustFilter(Mod(cwt_i * Conj(cwt_i)))
- WY <- epclustFilter(Mod(cwt_j * Conj(cwt_j)))
+ WY <- epclustFilter(Mod(cwt_j * Conj(cwt_j)))
wer2 <- sum(colSums(num)^2) / sum(colSums(WX) * colSums(WY))
Xwer_dist[i,j] <- sqrt(delta * ncol(cwt_i) * max(1 - wer2, 0.)) #FIXME: wer2 should be < 1
Xwer_dist[j,i] <- Xwer_dist[i,j]
-#} ) )
Xwer_dist[i,i] = 0.
}
- if (parll)
- {
- cl = parallel::makeCluster(ncores_clust)
- synchrones_desc <- bigmemory::describe(synchrones)
- Xwer_dist_desc <- bigmemory::describe(Xwer_dist)
-
- parallel::clusterExport(cl, varlist=c("synchrones_desc","Xwer_dist_desc","totnoct",
- "nvoice","w0","s0log","noctave","s0","verbose"), envir=environment())
- }
-
ignored <-
if (parll)
parallel::parLapply(cl, pairs, computeDistancesIJ)