EMGLLF_R = function(phiInit,rhoInit,piInit,gamInit,mini,maxi,gamma,lambda,X,Y,tau)
{
- #matrix dimensions
+ # Matrix dimensions
n = dim(X)[1]
p = dim(phiInit)[1]
m = dim(phiInit)[2]
k = dim(phiInit)[3]
-
- #init outputs
+
+ # Outputs
phi = phiInit
rho = rhoInit
pi = piInit
- LLF = rep(0, maxi)
+ llh = -Inf
S = array(0, dim=c(p,m,k))
-
+
+ # Algorithm variables
gam = gamInit
Gram2 = array(0, dim=c(p,p,k))
ps2 = array(0, dim=c(p,m,k))
b = rep(0, k)
X2 = array(0, dim=c(n,p,k))
Y2 = array(0, dim=c(n,m,k))
- dist = 0
- dist2 = 0
- ite = 1
- pi2 = rep(0, k)
- ps = matrix(0, m,k)
- nY2 = matrix(0, m,k)
- ps1 = array(0, dim=c(n,m,k))
- Gam = matrix(0, n,k)
- EPS = 1E-15
-
- while(ite <= mini || (ite<= maxi && (dist>= tau || dist2 >= sqrt(tau))))
+ EPS = 1e-15
+
+ for (ite in 1:maxi)
{
+ # Remember last pi,rho,phi values for exit condition in the end of loop
Phi = phi
Rho = rho
Pi = pi
- #calcul associé à Y et X
- for(r in 1:k)
+ # Calcul associé à Y et X
+ for (r in 1:k)
{
for (mm in 1:m)
Y2[,mm,r] = sqrt(gam[,r]) * Y[,mm]
##########
#Etape M #
##########
-
- #pour pi
- for (r in 1:k)
- b[r] = sum(abs(phi[,,r]))
+
+ # Pour pi
+ b = sapply( 1:k, function(r) sum(abs(phi[,,r])) )
gam2 = colSums(gam)
a = sum(gam %*% log(pi))
- #tant que les props sont negatives
+ # Tant que les props sont negatives
kk = 0
pi2AllPositive = FALSE
while (!pi2AllPositive)
kk = kk+1
}
- #t(m) la plus grande valeur dans la grille O.1^k tel que ce soit décroissante ou constante
+ # t(m) la plus grande valeur dans la grille O.1^k tel que ce soit décroissante ou constante
while( kk < 1000 && -a/n + lambda * sum(pi^gamma * b) <
-sum(gam2 * log(pi2))/n + lambda * sum(pi2^gamma * b) )
{
{
for (mm in 1:m)
{
+ ps = 0
for (i in 1:n)
- {
- ps1[i,mm,r] = Y2[i,mm,r] * sum(X2[i,,r] * phi[,mm,r])
- }
- ps[mm,r] = sum(ps1[,mm,r])
- nY2[mm,r] = sum(Y2[,mm,r]^2)
- rho[mm,mm,r] = (ps[mm,r]+sqrt(ps[mm,r]^2+4*nY2[mm,r]*gam2[r])) / (2*nY2[mm,r])
+ ps = ps + Y2[i,mm,r] * sum(X2[i,,r] * phi[,mm,r])
+ nY2 = sum(Y2[,mm,r]^2)
+ rho[mm,mm,r] = (ps+sqrt(ps^2+4*nY2*gam2[r])) / (2*nY2)
}
}
#Etape E #
##########
- sumLogLLF2 = 0
+ sumLogLLH2 = 0
for (i in 1:n)
{
- #precompute sq norms to numerically adjust their values
- sqNorm2 = rep(0,k)
- for (r in 1:k)
- sqNorm2[r] = sum( (Y[i,]%*%rho[,,r]-X[i,]%*%phi[,,r])^2 )
-
- #compute Gam[,]
- sumLLF1 = 0.0;
+ # Update gam[,]
+ sumLLH1 = 0
+ sumGamI = 0
for (r in 1:k)
{
- Gam[i,r] = pi[r] * exp(-0.5*sqNorm2[r]) * det(rho[,,r])
- sumLLF1 = sumLLF1 + Gam[i,r] / (2*base::pi)^(m/2)
+ gam[i,r] = pi[r] * exp(-0.5*sum( (Y[i,]%*%rho[,,r]-X[i,]%*%phi[,,r])^2 ))
+ * det(rho[,,r])
+ sumLLH1 = sumLLH1 + gam[i,r] / (2*base::pi)^(m/2)
+ sumGamI = sumGamI + gam[i,r]
}
- sumLogLLF2 = sumLogLLF2 + log(sumLLF1)
- sumGamI = sum(Gam[i,])
- if(sumGamI > EPS)
- gam[i,] = Gam[i,] / sumGamI
- else
- gam[i,] = rep(0,k)
+ sumLogLLH2 = sumLogLLH2 + log(sumLLH1)
+ if(sumGamI > EPS) #else: gam[i,] is already ~=0
+ gam[i,] = gam[i,] / sumGamI
}
sumPen = sum(pi^gamma * b)
- LLF[ite] = -sumLogLLF2/n + lambda*sumPen
- dist = ifelse( ite == 1, LLF[ite], (LLF[ite]-LLF[ite-1]) / (1+abs(LLF[ite])) )
+ last_llh = llh
+ llh = -sumLogLLH2/n + lambda*sumPen
+ dist = ifelse( ite == 1, llh, (llh-last_llh) / (1+abs(llh)) )
Dist1 = max( (abs(phi-Phi)) / (1+abs(phi)) )
Dist2 = max( (abs(rho-Rho)) / (1+abs(rho)) )
Dist3 = max( (abs(pi-Pi)) / (1+abs(Pi)) )
dist2 = max(Dist1,Dist2,Dist3)
- ite = ite+1
+ if (ite>=mini && (dist>= tau || dist2 >= sqrt(tau)))
+ break
}
affec = apply(gam, 1, which.max)
- return(list("phi"=phi, "rho"=rho, "pi"=pi, "LLF"=LLF, "S"=S, "affec" = affec ))
+ list( "phi"=phi, "rho"=rho, "pi"=pi, "llh"=llh, "S"=S, "affec"=affec )
}