{
//Y2[,mm,r] = sqrt(gam[,r]) * Y[,mm]
for (int u=0; u<n; u++)
- Y2[ai(u,mm,r,n,m,k)] = sqrt(gam[mi(u,r,n,k)]) * Y[mi(u,mm,m,n)];
+ Y2[ai(u,mm,r,n,m,k)] = sqrt(gam[mi(u,r,n,k)]) * Y[mi(u,mm,n,m)];
}
for (int i=0; i<n; i++)
{
kk++;
}
- //(pi.^gamma)*b
+ //sum(pi^gamma * b)
Real piPowGammaDotB = 0.;
for (int v=0; v<k; v++)
piPowGammaDotB += pow(pi[v],gamma) * b[v];
- //(pi2.^gamma)*b
+ //sum(pi2^gamma * b)
Real pi2PowGammaDotB = 0.;
for (int v=0; v<k; v++)
pi2PowGammaDotB += pow(pi2[v],gamma) * b[v];
- //transpose(gam2)*log(pi2)
- Real prodGam2logPi2 = 0.;
+ //sum(gam2 * log(pi2))
+ Real gam2DotLogPi2 = 0.;
for (int v=0; v<k; v++)
- prodGam2logPi2 += gam2[v] * log(pi2[v]);
+ gam2DotLogPi2 += gam2[v] * log(pi2[v]);
+
//t(m) la plus grande valeur dans la grille O.1^k tel que ce soit décroissante ou constante
- while (-invN*a + lambda*piPowGammaDotB < -invN*prodGam2logPi2 + lambda*pi2PowGammaDotB
+ while (-invN*a + lambda*piPowGammaDotB < -invN*gam2DotLogPi2 + lambda*pi2PowGammaDotB
&& kk<1000)
{
Real pow_01_kk = pow(0.1,kk);
//pi2 = pi + 0.1^kk * (1/n*gam2 - pi)
for (int v=0; v<k; v++)
pi2[v] = pi[v] + pow_01_kk * (invN*gam2[v] - pi[v]);
- //pi2 was updated, so we recompute pi2PowGammaDotB and prodGam2logPi2
+ //pi2 was updated, so we recompute pi2PowGammaDotB and gam2DotLogPi2
pi2PowGammaDotB = 0.;
for (int v=0; v<k; v++)
pi2PowGammaDotB += pow(pi2[v],gamma) * b[v];
- prodGam2logPi2 = 0.;
+ gam2DotLogPi2 = 0.;
for (int v=0; v<k; v++)
- prodGam2logPi2 += gam2[v] * log(pi2[v]);
+ gam2DotLogPi2 += gam2[v] * log(pi2[v]);
kk++;
}
Real t = pow(0.1,kk);
{
for (int i=0; i<n; i++)
{
- //< X2(i,:,r) , phi(:,mm,r) >
+ //< X2[i,,r] , phi[,mm,r] >
Real dotProduct = 0.;
for (int u=0; u<p; u++)
dotProduct += X2[ai(i,u,r,n,p,k)] * phi[ai(u,mm,r,p,m,k)];
for (int u=0; u<n; u++)
sumPs1 += ps1[ai(u,mm,r,n,m,k)];
ps[mi(mm,r,m,k)] = sumPs1;
- //nY2[mm,r] = sum(Y2[,mm,r])
- Real sumNy2 = 0.;
+ //nY2[mm,r] = sum(Y2[,mm,r]^2)
+ Real sumY2 = 0.;
for (int u=0; u<n; u++)
- sumNy2 += Y2[ai(u,mm,r,n,m,k)];
- nY2[mi(mm,r,m,k)] = sumNy2;
+ sumY2 += Y2[ai(u,mm,r,n,m,k)] * Y2[ai(u,mm,r,n,m,k)];
+ nY2[mi(mm,r,m,k)] = sumY2;
//rho[mm,mm,r] = (ps[mm,r]+sqrt(ps[mm,r]^2+4*nY2[mm,r]*(gam2[r]))) / (2*nY2[mm,r])
rho[ai(mm,mm,r,m,m,k)] = ( ps[mi(mm,r,m,k)] + sqrt( ps[mi(mm,r,m,k)]*ps[mi(mm,r,m,k)]
+ 4*nY2[mi(mm,r,m,k)] * gam2[r] ) ) / (2*nY2[mi(mm,r,m,k)]);
}
}
+
for (int r=0; r<k; r++)
{
for (int j=0; j<p; j++)
for (int mm=0; mm<m; mm++)
{
//sum(phi[-j,mm,r] * Gram2[j, setdiff(1:p,j),r])
- Real dotPhiGram2 = 0.0;
+ Real phiDotGram2 = 0.;
for (int u=0; u<p; u++)
{
if (u != j)
- dotPhiGram2 += phi[ai(u,mm,r,p,m,k)] * Gram2[ai(j,u,r,p,p,k)];
+ phiDotGram2 += phi[ai(u,mm,r,p,m,k)] * Gram2[ai(j,u,r,p,p,k)];
}
- //S[j,mm,r] = -rho[mm,mm,r]*ps2[j,mm,r] + sum(phi[-j,mm,r] * Gram2[j, setdiff(1:p,j),r])
- S[ai(j,mm,r,p,m,k)] = -rho[ai(mm,mm,r,m,m,k)] * ps2[ai(j,mm,r,p,m,k)] + dotPhiGram2;
- Real pow_pir_gamma = pow(pi[r],gamma);
- if (fabs(S[ai(j,mm,r,p,m,k)]) <= n*lambda*pow_pir_gamma)
- phi[ai(j,mm,r,p,m,k)] = 0;
- else if (S[ai(j,mm,r,p,m,k)] > n*lambda*pow_pir_gamma)
+ //S[j,mm,r] = -rho[mm,mm,r]*ps2[j,mm,r] + sum(phi[-j,mm,r] * Gram2[j,-j,r])
+ S[ai(j,mm,r,p,m,k)] = -rho[ai(mm,mm,r,m,m,k)] * ps2[ai(j,mm,r,p,m,k)] + phiDotGram2;
+ Real pirPowGamma = pow(pi[r],gamma);
+ if (fabs(S[ai(j,mm,r,p,m,k)]) <= n*lambda*pirPowGamma)
+ phi[ai(j,mm,r,p,m,k)] = 0.;
+ else if (S[ai(j,mm,r,p,m,k)] > n*lambda*pirPowGamma)
{
- phi[ai(j,mm,r,p,m,k)] = (n*lambda*pow_pir_gamma - S[ai(j,mm,r,p,m,k)])
+ phi[ai(j,mm,r,p,m,k)] = (n*lambda*pirPowGamma - S[ai(j,mm,r,p,m,k)])
/ Gram2[ai(j,j,r,p,p,k)];
}
else
{
- phi[ai(j,mm,r,p,m,k)] = -(n*lambda*pow_pir_gamma + S[ai(j,mm,r,p,m,k)])
+ phi[ai(j,mm,r,p,m,k)] = -(n*lambda*pirPowGamma + S[ai(j,mm,r,p,m,k)])
/ Gram2[ai(j,j,r,p,p,k)];
}
}
YiRhoR[u] += Y[mi(i,v,n,m)] * rho[ai(v,u,r,m,m,k)];
}
- //compute X(i,:)*phi(:,:,r)
+ //compute X[i,]%*%phi[,,r]
for (int u=0; u<m; u++)
{
XiPhiR[u] = 0.;
sumLLF1 += Gam[mi(i,r,n,k)] / gaussConstM;
sumGamI += Gam[mi(i,r,n,k)];
}
+
sumLogLLF2 += log(sumLLF1);
for (int r=0; r<k; r++)
{
Gram2[j,s,r] = crossprod(X2[,j,r], X2[,s,r])
}
}
-
+
##########
#Etape M #
##########
#pour pi
- for (r in 1:k){
- b[r] = sum(abs(phi[,,r]))}
+ for (r in 1:k)
+ b[r] = sum(abs(phi[,,r]))
gam2 = colSums(gam)
a = sum(gam %*% log(pi))
-
+
#tant que les props sont negatives
kk = 0
pi2AllPositive = FALSE
kk = kk+1
}
-#if (ite==2) browser()
- #t[m] la plus grande valeur dans la grille O.1^k tel que ce soit décroissante ou constante
+ #t(m) la plus grande valeur dans la grille O.1^k tel que ce soit décroissante ou constante
while( kk < 1000 && -a/n + lambda * sum(pi^gamma * b) <
-sum(gam2 * log(pi2))/n + lambda * sum(pi2^gamma * b) )
{
}
t = 0.1^kk
pi = (pi + t*(pi2-pi)) / sum(pi + t*(pi2-pi))
-
+
#Pour phi et rho
for (r in 1:k)
{
ps[mm,r] = sum(ps1[,mm,r])
nY2[mm,r] = sum(Y2[,mm,r]^2)
rho[mm,mm,r] = (ps[mm,r]+sqrt(ps[mm,r]^2+4*nY2[mm,r]*gam2[r])) / (2*nY2[mm,r])
- }
+ }
}
+
for (r in 1:k)
{
for (j in 1:p)
{
for (mm in 1:m)
{
- S[j,mm,r] = -rho[mm,mm,r]*ps2[j,mm,r] + sum(phi[-j,mm,r] * Gram2[j, setdiff(1:p, j),r])
-# (if(j>1) sum(phi[1:(j-1),mm,r] * Gram2[j,1:(j-1),r]) else 0) +
-# (if(j<p) sum(phi[(j+1):p,mm,r] * Gram2[j,(j+1):p,r]) else 0)
- if (abs(S[j,mm,r]) <= n*lambda*(pi[r]^gamma))
+ S[j,mm,r] = -rho[mm,mm,r]*ps2[j,mm,r] + sum(phi[-j,mm,r] * Gram2[j,-j,r])
+ if (abs(S[j,mm,r]) <= n*lambda*(pi[r]^gamma))
phi[j,mm,r]=0
else if(S[j,mm,r] > n*lambda*(pi[r]^gamma))
phi[j,mm,r] = (n*lambda*(pi[r]^gamma)-S[j,mm,r]) / Gram2[j,j,r]
{
#precompute sq norms to numerically adjust their values
sqNorm2 = rep(0,k)
- for (r in 1:k){
- sqNorm2[r] = sum( (Y[i,]%*%rho[,,r]-X[i,]%*%phi[,,r])^2 )}
+ for (r in 1:k)
+ sqNorm2[r] = sum( (Y[i,]%*%rho[,,r]-X[i,]%*%phi[,,r])^2 )
- #compute Gam(:,:)
+ #compute Gam[,]
sumLLF1 = 0.0;
for (r in 1:k)
{
- #FIXME: numerical problems, because 0 < det(Rho[,,r] < EPS; what to do ?!
- # consequence: error in while() at line 77
- Gam[i,r] = pi[r] * exp(-0.5*sqNorm2[r])* det(rho[,,r])
+ Gam[i,r] = pi[r] * exp(-0.5*sqNorm2[r]) * det(rho[,,r])
sumLLF1 = sumLLF1 + Gam[i,r] / (2*base::pi)^(m/2)
}
sumLogLLF2 = sumLogLLF2 + log(sumLLF1)
sumPen = sum(pi^gamma * b)
LLF[ite] = -sumLogLLF2/n + lambda*sumPen
-
dist = ifelse( ite == 1, LLF[ite], (LLF[ite]-LLF[ite-1]) / (1+abs(LLF[ite])) )
-
Dist1 = max( (abs(phi-Phi)) / (1+abs(phi)) )
Dist2 = max( (abs(rho-Rho)) / (1+abs(rho)) )
Dist3 = max( (abs(pi-Pi)) / (1+abs(Pi)) )