finished a.EMGLLF.c [to test] ; fix indices in EMGLLF.c [by cols]
authorBenjamin Auder <benjamin.auder@somewhere>
Fri, 2 Dec 2016 01:41:42 +0000 (02:41 +0100)
committerBenjamin Auder <benjamin.auder@somewhere>
Fri, 2 Dec 2016 01:41:42 +0000 (02:41 +0100)
src/Makevars
src/adapters/a.EMGLLF.c
src/sources/EMGLLF.c
src/sources/utils/io.c [deleted file]
src/sources/utils/io.h
src/sources/utils/omp_num_threads.h [deleted file]
src/sources/utils/tune_parallelisms.h [new file with mode: 0644]

index aa08234..bec17f0 100644 (file)
@@ -2,6 +2,6 @@ PKG_CFLAGS=-g -I.
 
 PKG_LIBS=-lm
 
-SOURCES = $(wildcard adapters/*.c sources/*.c sources/utils/*.c)
+SOURCES = $(wildcard adapters/*.c sources/*.c)
 
 OBJECTS = $(SOURCES:.c=.o)
index 241a09f..747a3c9 100644 (file)
 #include <R.h>
 #include <Rdefines.h>
 #include "sources/EMGLLF.h"
-#include "sources/utils/io.h"
 
 SEXP EMGLLF(
-       SEXP M_, 
-       SEXP NIix_, 
-       SEXP alpha_, 
-       SEXP h_, 
-       SEXP epsilon_, 
-       SEXP maxiter_, 
-       SEXP symmNeighbs_, 
-       SEXP trace_
+       SEXP phiInit_,
+       SEXP rhoInit_,
+       SEXP piInit_,
+       SEXP gamInit_,
+       SEXP mini_,
+       SEXP maxi_,
+       SEXP gamma_,
+       SEXP lambda_,
+       SEXP X_,
+       SEXP Y_,
+       SEXP tau_
 ) {
-       // get parameters
-       double alpha = NUMERIC_VALUE(alpha_);
-       double h = NUMERIC_VALUE(h_);
-       double epsilon = NUMERIC_VALUE(epsilon_);
-       int maxiter = INTEGER_VALUE(maxiter_);
-       int symmNeighbs = LOGICAL_VALUE(symmNeighbs_);
-       int trace = LOGICAL_VALUE(trace_);
-
-       // extract infos from M and get associate pointer
-       SEXP dim = getAttrib(M_, R_DimSymbol);
-       int nrow = INTEGER(dim)[0];
-       int ncol = INTEGER(dim)[1];
-       // M is always given by columns: easier to process in rows
-       double* pM = transpose(REAL(M_), nrow, ncol);
-
-       // extract NIix list vectors in a jagged array
-       int* lengthNIix = (int*)malloc(nrow*sizeof(int));
-       int** NIix = (int**)malloc(nrow*sizeof(int*));
-       for (int i=0; i<nrow; i++)
-       {
-               lengthNIix[i] = LENGTH(VECTOR_ELT(NIix_,i));
-               SEXP tmp;
-               PROTECT(tmp = AS_INTEGER(VECTOR_ELT(NIix_,i)));
-               NIix[i] = (int*)malloc(lengthNIix[i]*sizeof(int));
-               for (int j=0; j<lengthNIix[i]; j++)
-                       NIix[i][j] = INTEGER(tmp)[j];
-               UNPROTECT(1);
-               // WARNING: R indices start at 1,
-               // so we must lower every index right now to avoid future bug
-               for (int j=0; j<lengthNIix[i]; j++)
-                       NIix[i][j]--;
-       }
-
-       // Main call to core algorithm
-       Parameters params = getVarsWithConvexOptim_core(
-               pM, lengthNIix, NIix, nrow, ncol, alpha, h, epsilon, maxiter, symmNeighbs, trace);
-
-       // free neighborhoods parameters arrays
-       free(lengthNIix);
-       for (int i=0; i<nrow; i++)
-               free(NIix[i]);
-       free(NIix);
-
-       // copy matrix F into pF for output to R (1D matrices)
-       SEXP f;
-       PROTECT(f = allocMatrix(REALSXP, nrow, ncol));
-       double* pF = REAL(f);
-       for (int i=0; i<nrow; i++)
-       {
-               for (int j=0; j<ncol; j++)
-                       pF[i+nrow*j] = params.f[i][j];
-       }
-       // copy theta into pTheta for output to R
-       SEXP theta;
-       PROTECT(theta = allocVector(REALSXP, nrow));
-       double* pTheta = REAL(theta);
-       for (int i=0; i<nrow; i++)
-               pTheta[i] = params.theta[i];
-
-       // free params.f and params.theta
-       free(params.theta);
-       for (int i=0; i<nrow; i++)
-               free(params.f[i]);
-       free(params.f);
-
-       // build return list with f and theta
-       SEXP listParams, listNames;
-       PROTECT(listParams = allocVector(VECSXP, 2));
-       char* lnames[2] = {"f", "theta"}; //lists labels
-       PROTECT(listNames = allocVector(STRSXP,2));
-       for (int i=0; i<2; i++)
-               SET_STRING_ELT(listNames,i,mkChar(lnames[i]));
-       setAttrib(listParams, R_NamesSymbol, listNames);
-       SET_VECTOR_ELT(listParams, 0, f);
-       SET_VECTOR_ELT(listParams, 1, theta);
-
-       UNPROTECT(4);
-       return listParams;
-
-
-
-
-
-
-
-
        // Get matrices dimensions
-       const mwSize n = mxGetDimensions(prhs[8])[0];
-       const mwSize p = mxGetDimensions(prhs[0])[0];
-       const mwSize m = mxGetDimensions(prhs[0])[1];
-       const mwSize k = mxGetDimensions(prhs[0])[2];
+       int n = INTEGER(getAttrib(X_, R_DimSymbol))[0];
+       SEXP dim = getAttrib(phiInit_, R_DimSymbol)
+       int p = INTEGER(dim)[0];
+       int m = INTEGER(dim)[1];
+       int k = INTEGER(dim)[2];
 
        ////////////
        // INPUTS //
        ////////////
 
-       // phiInit
-       const mwSize* dimPhiInit = mxGetDimensions(prhs[0]);
-       Real* brPhiInit = matlabToBrArray_real(mxGetPr(prhs[0]), dimPhiInit, 3);
-       
-       // rhoInit
-       const mwSize* dimRhoInit = mxGetDimensions(prhs[1]);
-       Real* brRhoInit = matlabToBrArray_real(mxGetPr(prhs[1]), dimRhoInit, 3);
-
-       // piInit
-       Real* piInit = mxGetPr(prhs[2]);
-
-       // gamInit
-       const mwSize* dimGamInit = mxGetDimensions(prhs[3]);
-       Real* brGamInit = matlabToBrArray_real(mxGetPr(prhs[3]), dimGamInit, 2);
-
-       // min number of iterations
-       Int mini = ((Int*)mxGetData(prhs[4]))[0];
-
-       // max number of iterations
-       Int maxi = ((Int*)mxGetData(prhs[5]))[0];
-
-       // gamma
-       Real gamma = mxGetScalar(prhs[6]);
-
-       // lambda
-       Real lambda = mxGetScalar(prhs[7]);
-
-       // X
-       const mwSize* dimX = mxGetDimensions(prhs[8]);
-       Real* brX = matlabToBrArray_real(mxGetPr(prhs[8]), dimX, 2);
-       
-       // Y
-       const mwSize* dimY = mxGetDimensions(prhs[9]);
-       Real* brY = matlabToBrArray_real(mxGetPr(prhs[9]), dimY, 2);
-       
-       // tau
-       Real tau = mxGetScalar(prhs[10]);
+       // get scalar parameters
+       int mini = INTEGER_VALUE(mini_);
+       int maxi = INTEGER_VALUE(maxi_);
+       double gamma = NUMERIC_VALUE(gamma_);
+       double lambda = NUMERIC_VALUE(lambda_);
+       double tau = NUMERIC_VALUE(tau_);
+
+       // Get pointers from SEXP arrays ; WARNING: by columns !
+       double* phiInit = REAL(phiInit_);
+       double* rhoInit = REAL(rhoInit_);
+       double* piInit = REAL(piInit_);
+       double* gamInit = REAL(gamInit_);
+       double* X = REAL(X_);
+       double* Y = REAL(Y_);
 
        /////////////
        // OUTPUTS //
        /////////////
 
-       // phi
-       const mwSize dimPhi[] = {dimPhiInit[0], dimPhiInit[1], dimPhiInit[2]};
-       plhs[0] = mxCreateNumericArray(3,dimPhi,mxDOUBLE_CLASS,mxREAL);
-       Real* phi = mxGetPr(plhs[0]);
-
-       // rho
-       const mwSize dimRho[] = {dimRhoInit[0], dimRhoInit[1], dimRhoInit[2]};
-       plhs[1] = mxCreateNumericArray(3,dimRho,mxDOUBLE_CLASS,mxREAL);
-       Real* rho = mxGetPr(plhs[1]);
-
-       // pi
-       plhs[2] = mxCreateNumericMatrix(k,1,mxDOUBLE_CLASS,mxREAL);
-       Real* pi = mxGetPr(plhs[2]);
-
-       // LLF
-       plhs[3] = mxCreateNumericMatrix(maxi,1,mxDOUBLE_CLASS,mxREAL);
-       Real* LLF = mxGetPr(plhs[3]);
-
-       // S
-       const mwSize dimS[] = {p, m, k};
-    plhs[4] = mxCreateNumericArray(3,dimS,mxDOUBLE_CLASS,mxREAL);
-       Real* S = mxGetPr(plhs[4]);
+       SEXP phi, rho, pi, LLF, S, dimPhiS, dimRho;
+       PROTECT(dimPhiS = allocVector(INTSXP, 3));
+       int* pDimPhiS = INTEGER(dimPhiS);
+       pDimPhiS[0] = p; pDimPhiS[1] = m; pDimPhiS[2] = k;
+       PROTECT(dimRho = allocVector(INTSXP, 3));
+       int* pDimRho = INTEGER(dimRho);
+       pDimRho[0] = m; pDimRho[1] = m; pDimRho[2] = k;
+       PROTECT(phi = allocArray(REALSXP, dimPhiS));
+       PROTECT(rho = allocArray(REALSXP, dimRho));
+       PROTECT(pi = allocVector(REALSXP, k));
+       PROTECT(LLF = allocVector(REALSXP, maxi-mini+1));
+       PROTECT(S = allocArray(REALSXP, dimPhiS));
+       double* pPhi=REAL(phi), pRho=REAL(rho), pPi=REAL(pi), pLLF=REAL(LLF), pS=REAL(S);
 
        ////////////////////
        // Call to EMGLLF //
        ////////////////////
 
-       EMGLLF(brPhiInit,brRhoInit,piInit,brGamInit,mini,maxi,gamma,lambda,brX,brY,tau,
-               phi,rho,pi,LLF,S,
+       EMGLLF(phiInit,rhoInit,piInit,gamInit,mini,maxi,gamma,lambda,X,Y,tau,
+               pPhi,pRho,pPi,pLLF,pS,
                n,p,m,k);
-       
-       free(brPhiInit);
-       free(brRhoInit);
-       free(brGamInit);
-       free(brX);
-       free(brY);
-
-
-
-
-
 
+       // Build list from OUT params and return it
+       SEXP listParams, listNames;
+       PROTECT(listParams = allocVector(VECSXP, 5));
+       char* lnames[5] = {"phi", "rho", "pi", "LLF", "S"}; //lists labels
+       PROTECT(listNames = allocVector(STRSXP,5));
+       for (int i=0; i<5; i++)
+               SET_STRING_ELT(listNames,i,mkChar(lnames[i]));
+       setAttrib(listParams, R_NamesSymbol, listNames);
+       SET_ARRAY_ELT(listParams, 0, phi);
+       SET_ARRAY_ELT(listParams, 1, rho);
+       SET_MATRIX_ELT(listParams, 2, pi);
+       SET_VECTOR_ELT(listParams, 3, LLF);
+       SET_ARRAY_ELT(listParams, 4, S);
 
+       UNPROTECT(9);
+       return listParams;
 }
index 96b81b3..0c39d6e 100644 (file)
@@ -1,31 +1,31 @@
 #include "EMGLLF.h"
 #include <gsl/gsl_linalg.h>
 
-// TODO: comment on EMGLLF purpose
+// TODO: don't recompute indexes every time......
 void EMGLLF(
        // IN parameters
-       const Real* phiInit,  // parametre initial de moyenne renormalisé
-       const Real* rhoInit,  // parametre initial de variance renormalisé
-       const Real* piInit,   // parametre initial des proportions
-       const Real* gamInit,  // paramètre initial des probabilités a posteriori de chaque échantillon
-       Int mini,      // nombre minimal d'itérations dans l'algorithme EM     
-       Int maxi,      // nombre maximal d'itérations dans l'algorithme EM
-       Real gamma,  // valeur de gamma : puissance des proportions dans la pénalisation pour un Lasso adaptatif
-       Real lambda, // valeur du paramètre de régularisation du Lasso
-       const Real* X,     // régresseurs
-       const Real* Y,     // réponse
-       Real tau,    // seuil pour accepter la convergence
+       const double* phiInit,  // parametre initial de moyenne renormalisé
+       const double* rhoInit,  // parametre initial de variance renormalisé
+       const double* piInit,   // parametre initial des proportions
+       const double* gamInit,  // paramètre initial des probabilités a posteriori de chaque échantillon
+       int mini,      // nombre minimal d'itérations dans l'algorithme EM
+       int maxi,      // nombre maximal d'itérations dans l'algorithme EM
+       double gamma,  // valeur de gamma : puissance des proportions dans la pénalisation pour un Lasso adaptatif
+       double lambda, // valeur du paramètre de régularisation du Lasso
+       const double* X,     // régresseurs
+       const double* Y,     // réponse
+       double tau,    // seuil pour accepter la convergence
        // OUT parameters (all pointers, to be modified)
-       Real* phi,  // parametre de moyenne renormalisé, calculé par l'EM
-       Real* rho,  // parametre de variance renormalisé, calculé par l'EM
-       Real* pi,   // parametre des proportions renormalisé, calculé par l'EM
-       Real* LLF,   // log vraisemblance associé à cet échantillon, pour les valeurs estimées des paramètres
-    Real* S,
+       double* phi,  // parametre de moyenne renormalisé, calculé par l'EM
+       double* rho,  // parametre de variance renormalisé, calculé par l'EM
+       double* pi,   // parametre des proportions renormalisé, calculé par l'EM
+       double* LLF,   // log vraisemblance associé à cet échantillon, pour les valeurs estimées des paramètres
+    double* S,
        // additional size parameters
-       mwSize n,         // nombre d'echantillons
-       mwSize p,         // nombre de covariables
-       mwSize m,         // taille de Y (multivarié)
-       mwSize k)         // nombre de composantes dans le mélange
+       int n,         // nombre d'echantillons
+       int p,         // nombre de covariables
+       int m,         // taille de Y (multivarié)
+       int k)         // nombre de composantes dans le mélange
 {
        //Initialize outputs
        copyArray(phiInit, phi, p*m*k);
@@ -33,77 +33,77 @@ void EMGLLF(
        copyArray(piInit, pi, k);
        zeroArray(LLF, maxi);
        //S is already allocated, and doesn't need to be 'zeroed'
-       
+
        //Other local variables
        //NOTE: variables order is always [maxi],n,p,m,k
-       Real* gam = (Real*)malloc(n*k*sizeof(Real));
+       double* gam = (double*)malloc(n*k*sizeof(double));
        copyArray(gamInit, gam, n*k);
-       Real* b = (Real*)malloc(k*sizeof(Real));
-       Real* Phi = (Real*)malloc(p*m*k*sizeof(Real));
-       Real* Rho = (Real*)malloc(m*m*k*sizeof(Real));
-       Real* Pi = (Real*)malloc(k*sizeof(Real));
-       Real* gam2 = (Real*)malloc(k*sizeof(Real));
-       Real* pi2 = (Real*)malloc(k*sizeof(Real));
-       Real* Gram2 = (Real*)malloc(p*p*k*sizeof(Real));
-       Real* ps = (Real*)malloc(m*k*sizeof(Real));
-       Real* nY2 = (Real*)malloc(m*k*sizeof(Real));
-       Real* ps1 = (Real*)malloc(n*m*k*sizeof(Real));
-       Real* ps2 = (Real*)malloc(p*m*k*sizeof(Real));
-       Real* nY21 = (Real*)malloc(n*m*k*sizeof(Real));
-       Real* Gam = (Real*)malloc(n*k*sizeof(Real));
-       Real* X2 = (Real*)malloc(n*p*k*sizeof(Real));
-       Real* Y2 = (Real*)malloc(n*m*k*sizeof(Real));
+       double* b = (double*)malloc(k*sizeof(double));
+       double* Phi = (double*)malloc(p*m*k*sizeof(double));
+       double* Rho = (double*)malloc(m*m*k*sizeof(double));
+       double* Pi = (double*)malloc(k*sizeof(double));
+       double* gam2 = (double*)malloc(k*sizeof(double));
+       double* pi2 = (double*)malloc(k*sizeof(double));
+       double* Gram2 = (double*)malloc(p*p*k*sizeof(double));
+       double* ps = (double*)malloc(m*k*sizeof(double));
+       double* nY2 = (double*)malloc(m*k*sizeof(double));
+       double* ps1 = (double*)malloc(n*m*k*sizeof(double));
+       double* ps2 = (double*)malloc(p*m*k*sizeof(double));
+       double* nY21 = (double*)malloc(n*m*k*sizeof(double));
+       double* Gam = (double*)malloc(n*k*sizeof(double));
+       double* X2 = (double*)malloc(n*p*k*sizeof(double));
+       double* Y2 = (double*)malloc(n*m*k*sizeof(double));
        gsl_matrix* matrix = gsl_matrix_alloc(m, m);
        gsl_permutation* permutation = gsl_permutation_alloc(m);
-       Real* YiRhoR = (Real*)malloc(m*sizeof(Real));
-       Real* XiPhiR = (Real*)malloc(m*sizeof(Real));
-       Real dist = 0.0;
-       Real dist2 = 0.0;
-       Int ite = 0;
-       Real EPS = 1e-15;
-       Real* dotProducts = (Real*)malloc(k*sizeof(Real));
-       
+       double* YiRhoR = (double*)malloc(m*sizeof(double));
+       double* XiPhiR = (double*)malloc(m*sizeof(double));
+       double dist = 0.;
+       double dist2 = 0.;
+       int ite = 0;
+       double EPS = 1e-15;
+       double* dotProducts = (double*)malloc(k*sizeof(double));
+
        while (ite < mini || (ite < maxi && (dist >= tau || dist2 >= sqrt(tau))))
        {
                copyArray(phi, Phi, p*m*k);
                copyArray(rho, Rho, m*m*k);
                copyArray(pi, Pi, k);
-               
-               // Calculs associes a Y et X
-               for (mwSize r=0; r<k; r++)
+
+               // Calculs associés a Y et X
+               for (int r=0; r<k; r++)
                {
-                       for (mwSize mm=0; mm<m; mm++)
+                       for (int mm=0; mm<m; mm++)
                        {
                                //Y2(:,mm,r)=sqrt(gam(:,r)).*transpose(Y(mm,:));
-                               for (mwSize u=0; u<n; u++)
-                                       Y2[u*m*k+mm*k+r] = sqrt(gam[u*k+r]) * Y[u*m+mm];
+                               for (int u=0; u<n; u++)
+                                       Y2[ai(u,mm,r,n,m,k)] = sqrt(gam[mi(u,r,n,k)]) * Y[mi(u,mm,m,n)];
                        }
-                       for (mwSize i=0; i<n; i++)
+                       for (int i=0; i<n; i++)
                        {
                                //X2(i,:,r)=X(i,:).*sqrt(gam(i,r));
-                               for (mwSize u=0; u<p; u++)
-                                       X2[i*p*k+u*k+r] = sqrt(gam[i*k+r]) * X[i*p+u];
+                               for (int u=0; u<p; u++)
+                                       X2[ai(i,u,r,n,m,k)] = sqrt(gam[mi(i,r,n,k)]) * X[mi(i,u,n,p)];
                        }
-                       for (mwSize mm=0; mm<m; mm++)
+                       for (int mm=0; mm<m; mm++)
                        {
                                //ps2(:,mm,r)=transpose(X2(:,:,r))*Y2(:,mm,r);
-                               for (mwSize u=0; u<p; u++)
+                               for (int u=0; u<p; u++)
                                {
-                                       Real dotProduct = 0.0;
-                                       for (mwSize v=0; v<n; v++)
-                                               dotProduct += X2[v*p*k+u*k+r] * Y2[v*m*k+mm*k+r];
-                                       ps2[u*m*k+mm*k+r] = dotProduct;
+                                       double dotProduct = 0.;
+                                       for (int v=0; v<n; v++)
+                                               dotProduct += X2[ai(v,u,r,n,m,k)] * Y2[ai(v,mm,r,n,m,k)];
+                                       ps2[ai(u,mm,r,n,m,k)] = dotProduct;
                                }
                        }
-                       for (mwSize j=0; j<p; j++)
+                       for (int j=0; j<p; j++)
                        {
-                               for (mwSize s=0; s<p; s++)
+                               for (int s=0; s<p; s++)
                                {
                                        //Gram2(j,s,r)=transpose(X2(:,j,r))*(X2(:,s,r));
-                                       Real dotProduct = 0.0;
-                                       for (mwSize u=0; u<n; u++)
-                                               dotProduct += X2[u*p*k+j*k+r] * X2[u*p*k+s*k+r];                                        
-                                       Gram2[j*p*k+s*k+r] = dotProduct;
+                                       double dotProduct = 0.;
+                                       for (int u=0; u<n; u++)
+                                               dotProduct += X2[ai(u,j,r,n,p,k)] * X2[ai(u,s,r,n,p,k)];
+                                       Gram2[ai(j,s,r,p,p,k)] = dotProduct;
                                }
                        }
                }
@@ -111,46 +111,46 @@ void EMGLLF(
                /////////////
                // Etape M //
                /////////////
-               
+
                // Pour pi
-               for (mwSize r=0; r<k; r++)
+               for (int r=0; r<k; r++)
                {
                        //b(r) = sum(sum(abs(phi(:,:,r))));
-                       Real sumAbsPhi = 0.0;
-                       for (mwSize u=0; u<p; u++)
-                               for (mwSize v=0; v<m; v++)
-                                       sumAbsPhi += fabs(phi[u*m*k+v*k+r]);
+                       double sumAbsPhi = 0.;
+                       for (int u=0; u<p; u++)
+                               for (int v=0; v<m; v++)
+                                       sumAbsPhi += fabs(phi[ai(u,v,r,p,m,k)]);
                        b[r] = sumAbsPhi;
                }
                //gam2 = sum(gam,1);
-               for (mwSize u=0; u<k; u++)
+               for (int u=0; u<k; u++)
                {
-                       Real sumOnColumn = 0.0;
-                       for (mwSize v=0; v<n; v++)
-                               sumOnColumn += gam[v*k+u];
+                       double sumOnColumn = 0.;
+                       for (int v=0; v<n; v++)
+                               sumOnColumn += gam[mi(v,u,n,k)];
                        gam2[u] = sumOnColumn;
                }
                //a=sum(gam*transpose(log(pi)));
-               Real a = 0.0;
-               for (mwSize u=0; u<n; u++)
+               double a = 0.;
+               for (int u=0; u<n; u++)
                {
-                       Real dotProduct = 0.0;
-                       for (mwSize v=0; v<k; v++)
-                               dotProduct += gam[u*k+v] * log(pi[v]);
+                       double dotProduct = 0.;
+                       for (int v=0; v<k; v++)
+                               dotProduct += gam[mi(u,v,n,k)] * log(pi[v]);
                        a += dotProduct;
                }
-               
+
                //tant que les proportions sont negatives
-               mwSize kk = 0;
+               int kk = 0;
                int pi2AllPositive = 0;
-               Real invN = 1.0/n;
+               double invN = 1./n;
                while (!pi2AllPositive)
                {
                        //pi2(:)=pi(:)+0.1^kk*(1/n*gam2(:)-pi(:));
-                       for (mwSize r=0; r<k; r++)
+                       for (int r=0; r<k; r++)
                                pi2[r] = pi[r] + pow(0.1,kk) * (invN*gam2[r] - pi[r]);
                        pi2AllPositive = 1;
-                       for (mwSize r=0; r<k; r++)
+                       for (int r=0; r<k; r++)
                        {
                                if (pi2[r] < 0)
                                {
@@ -160,113 +160,113 @@ void EMGLLF(
                        }
                        kk++;
                }
-               
+
                //t(m) la plus grande valeur dans la grille O.1^k tel que ce soit décroissante ou constante
                //(pi.^gamma)*b
-               Real piPowGammaDotB = 0.0;
-               for (mwSize v=0; v<k; v++)
+               double piPowGammaDotB = 0.;
+               for (int v=0; v<k; v++)
                        piPowGammaDotB += pow(pi[v],gamma) * b[v];
                //(pi2.^gamma)*b
-               Real pi2PowGammaDotB = 0.0;
-               for (mwSize v=0; v<k; v++)
+               double pi2PowGammaDotB = 0.;
+               for (int v=0; v<k; v++)
                        pi2PowGammaDotB += pow(pi2[v],gamma) * b[v];
                //transpose(gam2)*log(pi2)
-               Real prodGam2logPi2 = 0.0;
-               for (mwSize v=0; v<k; v++)
+               double prodGam2logPi2 = 0.;
+               for (int v=0; v<k; v++)
                        prodGam2logPi2 += gam2[v] * log(pi2[v]);
                while (-invN*a + lambda*piPowGammaDotB < -invN*prodGam2logPi2 + lambda*pi2PowGammaDotB && kk<1000)
                {
                        //pi2=pi+0.1^kk*(1/n*gam2-pi);
-                       for (mwSize v=0; v<k; v++)
+                       for (int v=0; v<k; v++)
                                pi2[v] = pi[v] + pow(0.1,kk) * (invN*gam2[v] - pi[v]);
                        //pi2 was updated, so we recompute pi2PowGammaDotB and prodGam2logPi2
-                       pi2PowGammaDotB = 0.0;
-                       for (mwSize v=0; v<k; v++)
+                       pi2PowGammaDotB = 0.;
+                       for (int v=0; v<k; v++)
                                pi2PowGammaDotB += pow(pi2[v],gamma) * b[v];
-                       prodGam2logPi2 = 0.0;
-                       for (mwSize v=0; v<k; v++)
+                       prodGam2logPi2 = 0.;
+                       for (int v=0; v<k; v++)
                                prodGam2logPi2 += gam2[v] * log(pi2[v]);
                        kk++;
                }
-               Real t = pow(0.1,kk);
+               double t = pow(0.1,kk);
                //sum(pi+t*(pi2-pi))
-               Real sumPiPlusTbyDiff = 0.0;
-               for (mwSize v=0; v<k; v++)
+               double sumPiPlusTbyDiff = 0.;
+               for (int v=0; v<k; v++)
                        sumPiPlusTbyDiff += (pi[v] + t*(pi2[v] - pi[v]));
                //pi=(pi+t*(pi2-pi))/sum(pi+t*(pi2-pi));
-               for (mwSize v=0; v<k; v++)
+               for (int v=0; v<k; v++)
                        pi[v] = (pi[v] + t*(pi2[v] - pi[v])) / sumPiPlusTbyDiff;
-               
+
                //Pour phi et rho
-               for (mwSize r=0; r<k; r++)
+               for (int r=0; r<k; r++)
                {
-                       for (mwSize mm=0; mm<m; mm++)
+                       for (int mm=0; mm<m; mm++)
                        {
-                               for (mwSize i=0; i<n; i++)
+                               for (int i=0; i<n; i++)
                                {
                                        //< X2(i,:,r) , phi(:,mm,r) >
-                                       Real dotProduct = 0.0;
-                                       for (mwSize u=0; u<p; u++)
-                                               dotProduct += X2[i*p*k+u*k+r] * phi[u*m*k+mm*k+r];
+                                       double dotProduct = 0.0;
+                                       for (int u=0; u<p; u++)
+                                               dotProduct += X2[ai(i,u,r,n,p,k)] * phi[ai(u,mm,r,n,m,k)];
                                        //ps1(i,mm,r)=Y2(i,mm,r)*dot(X2(i,:,r),phi(:,mm,r));
-                                       ps1[i*m*k+mm*k+r] = Y2[i*m*k+mm*k+r] * dotProduct;
-                                       nY21[i*m*k+mm*k+r] = Y2[i*m*k+mm*k+r] * Y2[i*m*k+mm*k+r];
+                                       ps1[ai(i,mm,r,n,m,k)] = Y2[ai(i,mm,r,n,m,k)] * dotProduct;
+                                       nY21[ai(i,mm,r,n,m,k)] = Y2[ai(i,mm,r,n,m,k)] * Y2[ai(i,mm,r,n,m,k)];
                                }
                                //ps(mm,r)=sum(ps1(:,mm,r));
-                               Real sumPs1 = 0.0;
-                               for (mwSize u=0; u<n; u++)
-                                       sumPs1 += ps1[u*m*k+mm*k+r];
-                               ps[mm*k+r] = sumPs1;
+                               double sumPs1 = 0.0;
+                               for (int u=0; u<n; u++)
+                                       sumPs1 += ps1[ai(u,mm,r,n,m,k)];
+                               ps[mi(mm,r,m,k)] = sumPs1;
                                //nY2(mm,r)=sum(nY21(:,mm,r));
-                               Real sumNy21 = 0.0;
-                               for (mwSize u=0; u<n; u++)
-                                       sumNy21 += nY21[u*m*k+mm*k+r];
-                               nY2[mm*k+r] = sumNy21;
+                               double sumNy21 = 0.0;
+                               for (int u=0; u<n; u++)
+                                       sumNy21 += nY21[ai(u,mm,r,n,m,k)];
+                               nY2[mi(mm,r,m,k)] = sumNy21;
                                //rho(mm,mm,r)=((ps(mm,r)+sqrt(ps(mm,r)^2+4*nY2(mm,r)*(gam2(r))))/(2*nY2(mm,r)));
-                               rho[mm*m*k+mm*k+r] = ( ps[mm*k+r] + sqrt( ps[mm*k+r]*ps[mm*k+r
-                                       + 4*nY2[mm*k+r] * (gam2[r]) ) ) / (2*nY2[mm*k+r]);
+                               rho[ai(mm,mm,k,m,m,k)] = ( ps[mi(mm,r,m,k)] + sqrt( ps[mi(mm,r,m,k)]*ps[mi(mm,r,m,k)
+                                       + 4*nY2[mi(mm,r,m,k)] * (gam2[r]) ) ) / (2*nY2[mi(mm,r,m,k)]);
                        }
                }
-               for (mwSize r=0; r<k; r++)
+               for (int r=0; r<k; r++)
                {
-                       for (mwSize j=0; j<p; j++)
+                       for (int j=0; j<p; j++)
                        {
-                               for (mwSize mm=0; mm<m; mm++)
+                               for (int mm=0; mm<m; mm++)
                                {
                                        //sum(phi(1:j-1,mm,r).*transpose(Gram2(j,1:j-1,r)))+sum(phi(j+1:p,mm,r).*transpose(Gram2(j,j+1:p,r)))
-                                       Real dotPhiGram2 = 0.0;
-                                       for (mwSize u=0; u<j; u++)
-                                               dotPhiGram2 += phi[u*m*k+mm*k+r] * Gram2[j*p*k+u*k+r];
-                                       for (mwSize u=j+1; u<p; u++)
-                                               dotPhiGram2 += phi[u*m*k+mm*k+r] * Gram2[j*p*k+u*k+r];
+                                       double dotPhiGram2 = 0.0;
+                                       for (int u=0; u<j; u++)
+                                               dotPhiGram2 += phi[ai(u,mm,r,p,m,k)] * Gram2[ai(j,u,r,p,p,k)];
+                                       for (int u=j+1; u<p; u++)
+                                               dotPhiGram2 += phi[ai(u,mm,r,p,m,k)] * Gram2[ai(j,u,r,p,p,k)];
                                        //S(j,r,mm)=-rho(mm,mm,r)*ps2(j,mm,r)+sum(phi(1:j-1,mm,r).*transpose(Gram2(j,1:j-1,r)))
                                        //    +sum(phi(j+1:p,mm,r).*transpose(Gram2(j,j+1:p,r)));
-                                       S[j*m*k+mm*k+r] = -rho[mm*m*k+mm*k+r] * ps2[j*m*k+mm*k+r] + dotPhiGram2;
-                                       if (fabs(S[j*m*k+mm*k+r]) <= n*lambda*pow(pi[r],gamma))
-                                               phi[j*m*k+mm*k+r] = 0;
-                                       else if (S[j*m*k+mm*k+r] > n*lambda*pow(pi[r],gamma))
-                                               phi[j*m*k+mm*k+r] = (n*lambda*pow(pi[r],gamma) - S[j*m*k+mm*k+r]) 
-                                                       / Gram2[j*p*k+j*k+r];
+                                       S[ai(j,mm,r,p,m,k)] = -rho[ai(mm,mm,r,m,m,k)] * ps2[ai(j,mm,r,p,m,k)] + dotPhiGram2;
+                                       if (fabs(S[ai(j,mm,r,p,m,k)]) <= n*lambda*pow(pi[r],gamma))
+                                               phi[ai(j,mm,r,p,m,k)] = 0;
+                                       else if (S[ai(j,mm,r,p,m,k)] > n*lambda*pow(pi[r],gamma))
+                                               phi[ai(j,mm,r,p,m,k)] = (n*lambda*pow(pi[r],gamma) - S[ai(j,mm,r,p,m,k)]) 
+                                                       / Gram2[ai(j,j,r,p,p,k)];
                                        else
-                                               phi[j*m*k+mm*k+r] = -(n*lambda*pow(pi[r],gamma) + S[j*m*k+mm*k+r]) 
-                                                       / Gram2[j*p*k+j*k+r];
+                                               phi[ai(j,mm,r,p,m,k)] = -(n*lambda*pow(pi[r],gamma) + S[ai(j,mm,r,p,m,k)]) 
+                                                       / Gram2[ai(j,j,r,p,p,k)];
                                }
                        }
                }
-               
+
                /////////////
                // Etape E //
                /////////////
-               
+
                int signum;
-               Real sumLogLLF2 = 0.0;
-               for (mwSize i=0; i<n; i++)
+               double sumLogLLF2 = 0.0;
+               for (int i=0; i<n; i++)
                {
-                       Real sumLLF1 = 0.0;
-                       Real sumGamI = 0.0;
-                       Real minDotProduct = INFINITY;
-            
-                       for (mwSize r=0; r<k; r++)
+                       double sumLLF1 = 0.0;
+                       double sumGamI = 0.0;
+                       double minDotProduct = INFINITY;
+
+                       for (int r=0; r<k; r++)
                        {
                                //Compute
                                //Gam(i,r) = Pi(r) * det(Rho(:,:,r)) * exp( -1/2 * (Y(i,:)*Rho(:,:,r) - X(i,:)...
@@ -274,57 +274,57 @@ void EMGLLF(
                                //split in several sub-steps
                                
                                //compute Y(i,:)*rho(:,:,r)
-                               for (mwSize u=0; u<m; u++)
+                               for (int u=0; u<m; u++)
                                {
                                        YiRhoR[u] = 0.0;
-                                       for (mwSize v=0; v<m; v++)
-                                               YiRhoR[u] += Y[i*m+v] * rho[v*m*k+u*k+r];
+                                       for (int v=0; v<m; v++)
+                                               YiRhoR[u] += Y[imi(i,v,n,m)] * rho[ai(v,u,r,m,m,k)];
                                }
-                               
+
                                //compute X(i,:)*phi(:,:,r)
-                               for (mwSize u=0; u<m; u++)
+                               for (int u=0; u<m; u++)
                                {
                                        XiPhiR[u] = 0.0;
-                                       for (mwSize v=0; v<p; v++)
-                                               XiPhiR[u] += X[i*p+v] * phi[v*m*k+u*k+r];
+                                       for (int v=0; v<p; v++)
+                                               XiPhiR[u] += X[mi(i,v,n,p)] * phi[ai(v,u,r,p,m,k)];
                                }
-                               
+
                                // compute dotProduct < Y(:,i)*rho(:,:,r)-X(i,:)*phi(:,:,r) . Y(:,i)*rho(:,:,r)-X(i,:)*phi(:,:,r) >
                                dotProducts[r] = 0.0;
-                               for (mwSize u=0; u<m; u++)
+                               for (int u=0; u<m; u++)
                                        dotProducts[r] += (YiRhoR[u]-XiPhiR[u]) * (YiRhoR[u]-XiPhiR[u]);
                                if (dotProducts[r] < minDotProduct)
                                        minDotProduct = dotProducts[r];
                        }
-                       Real shift = 0.5*minDotProduct;
-                       for (mwSize r=0; r<k; r++)
+                       double shift = 0.5*minDotProduct;
+                       for (int r=0; r<k; r++)
                        {
                                //compute det(rho(:,:,r)) [TODO: avoid re-computations]
-                               for (mwSize u=0; u<m; u++)
+                               for (int u=0; u<m; u++)
                                {
-                                       for (mwSize v=0; v<m; v++)
-                                               matrix->data[u*m+v] = rho[u*m*k+v*k+r];
+                                       for (int v=0; v<m; v++)
+                                               matrix->data[u*m+v] = rho[ai(u,v,r,m,m,k)];
                                }
                                gsl_linalg_LU_decomp(matrix, permutation, &signum);
-                               Real detRhoR = gsl_linalg_LU_det(matrix, signum);
-                               
-                               Gam[i*k+r] = pi[r] * detRhoR * exp(-0.5*dotProducts[r] + shift);
-                               sumLLF1 += Gam[i*k+r] / pow(2*M_PI,m/2.0);
-                               sumGamI += Gam[i*k+r];
+                               double detRhoR = gsl_linalg_LU_det(matrix, signum);
+
+                               Gam[mi(i,r,n,k)] = pi[r] * detRhoR * exp(-0.5*dotProducts[r] + shift);
+                               sumLLF1 += Gam[mi(i,r,n,k)] / pow(2*M_PI,m/2.0);
+                               sumGamI += Gam[mi(i,r,n,k)];
                        }
                        sumLogLLF2 += log(sumLLF1);
-                       for (mwSize r=0; r<k; r++)
+                       for (int r=0; r<k; r++)
                        {
                                //gam(i,r)=Gam(i,r)/sum(Gam(i,:));
-                               gam[i*k+r] = sumGamI > EPS
-                                       ? Gam[i*k+r] / sumGamI
+                               gam[mi(i,r,n,k)] = sumGamI > EPS
+                                       ? Gam[mi(i,r,n,k)] / sumGamI
                                        : 0.0;
                        }
                }
                
                //sum(pen(ite,:))
-               Real sumPen = 0.0;
-               for (mwSize r=0; r<k; r++)
+               double sumPen = 0.0;
+               for (int r=0; r<k; r++)
                        sumPen += pow(pi[r],gamma) * b[r];
                //LLF(ite)=-1/n*sum(log(LLF2(ite,:)))+lambda*sum(pen(ite,:));
                LLF[ite] = -invN * sumLogLLF2 + lambda * sumPen;
@@ -334,42 +334,42 @@ void EMGLLF(
                        dist = (LLF[ite] - LLF[ite-1]) / (1.0 + fabs(LLF[ite]));
                
                //Dist1=max(max((abs(phi-Phi))./(1+abs(phi))));
-               Real Dist1 = 0.0;
-               for (mwSize u=0; u<p; u++)
+               double Dist1 = 0.0;
+               for (int u=0; u<p; u++)
                {
-                       for (mwSize v=0; v<m; v++)
+                       for (int v=0; v<m; v++)
                        {
-                               for (mwSize w=0; w<k; w++)
+                               for (int w=0; w<k; w++)
                                {
-                                       Real tmpDist = fabs(phi[u*m*k+v*k+w]-Phi[u*m*k+v*k+w]) 
-                                               / (1.0+fabs(phi[u*m*k+v*k+w]));
+                                       double tmpDist = fabs(phi[ai(u,v,w,p,m,k)]-Phi[ai(u,v,w,p,m,k)]) 
+                                               / (1.0+fabs(phi[ai(u,v,w,p,m,k)]));
                                        if (tmpDist > Dist1)
                                                Dist1 = tmpDist;
                                }
                        }
                }
                //Dist2=max(max((abs(rho-Rho))./(1+abs(rho))));
-               Real Dist2 = 0.0;
-               for (mwSize u=0; u<m; u++)
+               double Dist2 = 0.0;
+               for (int u=0; u<m; u++)
                {
-                       for (mwSize v=0; v<m; v++)
+                       for (int v=0; v<m; v++)
                        {
-                               for (mwSize w=0; w<k; w++)
+                               for (int w=0; w<k; w++)
                                {
-                                       Real tmpDist = fabs(rho[u*m*k+v*k+w]-Rho[u*m*k+v*k+w]) 
-                                               / (1.0+fabs(rho[u*m*k+v*k+w]));
+                                       double tmpDist = fabs(rho[ai(u,v,w,m,m,k)]-Rho[ai(u,v,w,m,m,k)]) 
+                                               / (1.0+fabs(rho[ai(u,v,w,m,m,k)]));
                                        if (tmpDist > Dist2)
                                                Dist2 = tmpDist;
                                }
                        }
                }
                //Dist3=max(max((abs(pi-Pi))./(1+abs(Pi))));
-               Real Dist3 = 0.0;
-               for (mwSize u=0; u<n; u++)
+               double Dist3 = 0.0;
+               for (int u=0; u<n; u++)
                {
-                       for (mwSize v=0; v<k; v++)
+                       for (int v=0; v<k; v++)
                        {
-                               Real tmpDist = fabs(pi[v]-Pi[v]) / (1.0+fabs(pi[v]));
+                               double tmpDist = fabs(pi[v]-Pi[v]) / (1.0+fabs(pi[v]));
                                if (tmpDist > Dist3)
                                        Dist3 = tmpDist;
                        }
diff --git a/src/sources/utils/io.c b/src/sources/utils/io.c
deleted file mode 100644 (file)
index 36a1d8e..0000000
+++ /dev/null
@@ -1,168 +0,0 @@
-#include "ioutils.h"
-#include <string.h>
-#include <stdio.h>
-
-// Check if array == refArray
-void compareArray(const char* ID, const void* array, const void* refArray, mwSize size, int isInteger)
-{
-       Real EPS = 1e-5; //precision
-       printf("Checking %s\n",ID);
-       Real maxError = 0.0;
-       for (mwSize i=0; i<size; i++)
-       {
-               Real error = isInteger
-                       ? fabs(((Int*)array)[i] - ((Int*)refArray)[i])
-                       : fabs(((Real*)array)[i] - ((Real*)refArray)[i]);
-               if (error >= maxError)
-                       maxError = error;
-       }
-       if (maxError >= EPS)
-               printf("    Inaccuracy: max(abs(error)) = %g >= %g\n",maxError,EPS);
-       else
-               printf("    OK\n");
-}
-
-// Next function is a generalization of :
-//~ Real* brToMatlabArray(Real* brArray, int dimX, int dimY, int dimZ, int dimW)
-//~ {
-       //~ Real* matlabArray = (Real*)malloc(dimX*dimY*dimZ*dimW*sizeof(Real));
-       //~ for (int u=0; u<dimX*dimY*dimZ*dimW; u++)
-       //~ {
-               //~ int xIndex = u / (dimY*dimZ*dimW);
-               //~ int yIndex = (u % (dimY*dimZ*dimW)) / (dimZ*dimW);
-               //~ int zIndex = (u % (dimZ*dimW)) / dimW;
-               //~ int wIndex = u % dimW;
-               //~ matlabArray[xIndex+yIndex*dimX+zIndex*dimX*dimY+wIndex*dimX*dimY*dimZ] = brArray[u];
-       //~ }
-       //~ return matlabArray;
-//~ }
-
-// Auxiliary to convert from ours ("by-rows") encoding to MATLAB
-void* brToMatlabArray(const void* brArray, const mwSize* dimensions, int nbDims, int isInteger)
-{
-       mwSize totalDim = 1;
-       for (int i=0; i<nbDims; i++)
-               totalDim *= dimensions[i];
-       size_t elementSize = isInteger
-               ? sizeof(Int)
-               : sizeof(Real);
-       
-       void* matlabArray = malloc(totalDim*elementSize);
-       for (mwSize u=0; u<totalDim; u++)
-       {
-               mwSize prodDimLeft = totalDim;
-               mwSize prodDimRight = totalDim / dimensions[0];
-               mwSize prodDimInIndex = 1;
-               mwSize index = 0;
-               for (int v=0; v<nbDims; v++)
-               {
-                       index += ((u % prodDimLeft) / prodDimRight) * prodDimInIndex;
-                       prodDimInIndex *= dimensions[v];
-                       prodDimLeft /= dimensions[v];
-                       if (v+1 < nbDims)
-                               prodDimRight /= dimensions[v+1];
-               }
-               if (isInteger)
-                       ((Int*)matlabArray)[index] = ((Int*)brArray)[u];
-               else
-                       ((Real*)matlabArray)[index] = ((Real*)brArray)[u];
-       }
-       return matlabArray;
-}
-
-// Next function is a generalization of :
-//~ Real* matlabToBrArray(Real* matlabArray, int dimX, int dimY, int dimZ, int dimU)
-//~ {
-       //~ Real* brArray = (Real*)malloc(dimX*dimY*dimZ*dimU*sizeof(Real));
-       //~ for (int u=0; u<dimX*dimY*dimZ*dimU; u++)
-       //~ {
-               //~ int xIndex = u % dimX;
-               //~ int yIndex = (u % (dimX*dimY)) / dimX;
-               //~ int zIndex = (u % (dimX*dimY*dimZ)) / (dimX*dimY);
-               //~ int uIndex = u / (dimX*dimY*dimZ);
-               //~ brArray[xIndex*dimY*dimZ*dimU+yIndex*dimZ*dimU+zIndex*dimU+uIndex] = matlabArray[u];
-       //~ }
-       //~ return brArray;
-//~ }
-
-// Auxiliary to convert from MATLAB encoding to ours ("by-rows")
-void* matlabToBrArray(const void* matlabArray, const mwSize* dimensions, int nbDims, int isInteger)
-{
-       mwSize totalDim = 1;
-       for (int i=0; i<nbDims; i++)
-               totalDim *= dimensions[i];
-       size_t elementSize = isInteger
-               ? sizeof(Int)
-               : sizeof(Real);
-       
-       void* brArray = malloc(totalDim*elementSize);
-       for (mwSize u=0; u<totalDim; u++)
-       {
-               mwSize prodDimLeft = dimensions[0];
-               mwSize prodDimRight = 1;
-               mwSize prodDimInIndex = totalDim / dimensions[0];
-               mwSize index = 0;
-               for (int v=0; v<nbDims; v++)
-               {
-                       index += ((u % prodDimLeft) / prodDimRight) * prodDimInIndex;
-                       if (v+1 < nbDims)
-                       {
-                               prodDimInIndex /= dimensions[v+1];
-                               prodDimLeft *= dimensions[v+1];
-                       }
-                       prodDimRight *= dimensions[v];
-               }
-               if (isInteger)
-                       ((Int*)brArray)[index] = ((Int*)matlabArray)[u];
-               else
-                       ((Real*)brArray)[index] = ((Real*)matlabArray)[u];
-       }
-       return brArray;
-}
-
-// Read array by columns (as in MATLAB) and return by-rows encoding
-void* readArray(const char* fileName, const mwSize* dimensions, int nbDims, int isInteger)
-{
-       // need to prepend '../data/' (not really nice code...)
-       char* fullFileName = (char*)calloc(8+strlen(fileName)+1,sizeof(char));
-       strcat(fullFileName, "../data/");
-       strcat(fullFileName, fileName);
-       FILE* file = fopen(fullFileName, "r");
-       free(fullFileName);
-       
-       mwSize totalDim = 1;
-       for (int i=0; i<nbDims; i++)
-               totalDim *= dimensions[i];
-       size_t elementSize = isInteger
-               ? sizeof(Int)
-               : sizeof(Real);
-       
-       // read all values, and convert them to by-rows matrices format
-       void* matlabArray = malloc(totalDim*elementSize);
-       char curChar = ' ';
-       char bufferNum[64];
-       for (mwSize u=0; u<totalDim; u++)
-       {
-               // position to next non-separator character
-               while (!feof(file) && (curChar==' ' || curChar=='\n' || curChar=='\t' || curChar==','))
-                       curChar = fgetc(file);
-               // read number (as a string)
-               int bufferIndex = 0;
-               while (!feof(file) && curChar!=' ' && curChar!='\n' && curChar!='\t' && curChar!=',')
-               {
-                       bufferNum[bufferIndex++] = curChar;
-                       curChar = fgetc(file);
-               }
-               bufferNum[bufferIndex] = 0;
-               // transform string into Real, and store it at appropriate location
-               if (isInteger)
-                       ((Int*)matlabArray)[u] = atoi(bufferNum);
-               else
-                       ((Real*)matlabArray)[u] = atof(bufferNum);
-       }
-       fclose(file);
-       
-       void* brArray = matlabToBrArray(matlabArray, dimensions, nbDims, isInteger);
-       free(matlabArray);
-       return brArray;
-}
index 31f464a..9aa5899 100644 (file)
@@ -1,75 +1,26 @@
 #ifndef select_ioutils_H
 #define select_ioutils_H
 
-#include <stdlib.h>
-#include <math.h>
-#include <stdint.h>
-#include <uchar.h> //for type wchar16_t
-
-// Include header for mwSize type
-#ifdef Octave
-#include <mex.h>
-#else
-#include <tmwtypes.h>
-#endif
-
-// CHUNK_SIZE = number of lambda values to be treated sequentially by a single core
-#define CHUNK_SIZE 1
-
-// integer type chosen in MATLAB (to be tuned: 32 bits should be enough)
-typedef int64_t Int;
-
-// real number type chosen in MATLAB (default: double)
-typedef double Real;
-
-#ifndef M_PI
-#define M_PI 3.141592653589793 
-#endif
-
 // Fill an array with zeros
 #define zeroArray(array, size)\
 {\
-       for (Int u=0; u<size; u++)\
+       for (int u=0; u<size; u++)\
                array[u] = 0;\
 }
 
 // Copy an 1D array
 #define copyArray(array, copy, size)\
 {\
-       for (Int u=0; u<size; u++)\
+       for (int u=0; u<size; u++)\
                copy[u] = array[u];\
 }
 
-// Check if array == refArray
-void compareArray(const char* ID, const void* array, const void* refArray, mwSize size, int isInteger);
-
-#define compareArray_int(ID, array, refArray, size)\
-       compareArray(ID, array, refArray, size, 1)
-#define compareArray_real(ID, array, refArray, size)\
-       compareArray(ID, array, refArray, size, 0)
-
-// Auxiliary to convert from ours ("by-rows") encoding to MATLAB
-void* brToMatlabArray(const void* brArray, const mwSize* dimensions, int nbDims, int isInteger);
-
-#define brToMatlabArray_int(brArray, dimensions, nbDims)\
-       (Int*)brToMatlabArray(brArray, dimensions, nbDims, 1)
-#define brToMatlabArray_real(brArray, dimensions, nbDims)\
-       (Real*)brToMatlabArray(brArray, dimensions, nbDims, 0)
-
-// Auxiliary to convert from MATLAB encoding to ours ("by-rows")
-void* matlabToBrArray(const void* matlabArray, const mwSize* dimensions, int nbDims, int isInteger);
-
-#define matlabToBrArray_int(matlabArray, dimensions, nbDims)\
-       (Int*)matlabToBrArray(matlabArray, dimensions, nbDims, 1)
-#define matlabToBrArray_real(matlabArray, dimensions, nbDims)\
-       (Real*)matlabToBrArray(matlabArray, dimensions, nbDims, 0)
-
-// Read array by columns (as in MATLAB) and return by-rows encoding
-void* readArray(const char* fileName, const mwSize* dimensions, int nbDims, int isInteger);
+// Matrix Index ; TODO? ncol unused
+#define mi(i,j,nrow,ncol)\
+       j*nrow + i
 
-#define readArray_int(fileName, dimensions, nbDims)\
-       (Int*)readArray(fileName, dimensions, nbDims, 1)
-#define readArray_real(fileName, dimensions, nbDims)\
-       (Real*)readArray(fileName, dimensions, nbDims, 0)
+// Array Index ; TODO? d3 unused
+#define ai(i,j,k,d1,d2,d3)\
+       k*d1*d2 + j*d1 + i
 
 #endif
diff --git a/src/sources/utils/omp_num_threads.h b/src/sources/utils/omp_num_threads.h
deleted file mode 100644 (file)
index f4fcc24..0000000
+++ /dev/null
@@ -1,7 +0,0 @@
-#ifndef select_omp_num_threads_H
-#define select_omp_num_threads_H
-
-//Par exemple...
-#define OMP_NUM_THREADS 8
-
-#endif
diff --git a/src/sources/utils/tune_parallelisms.h b/src/sources/utils/tune_parallelisms.h
new file mode 100644 (file)
index 0000000..33a5171
--- /dev/null
@@ -0,0 +1,10 @@
+#ifndef tune_parallelism_H
+#define tune_parallelism_H
+
+// Number of OpenMP threads
+#define OMP_NUM_THREADS 8
+
+// CHUNK_SIZE = number of lambda values to be treated sequentially by a single core
+#define CHUNK_SIZE 1
+
+#endif