From: Benjamin Auder Date: Wed, 11 Dec 2019 15:44:28 +0000 (+0100) Subject: Add comments, TODOs... X-Git-Url: https://git.auder.net/DESCRIPTION?a=commitdiff_plain;h=9a6881ed8a16c31a3dbe995e3b1af76c1db6b5a0;p=morpheus.git Add comments, TODOs... --- diff --git a/pkg/R/optimParams.R b/pkg/R/optimParams.R index 505b665..ecfae7f 100644 --- a/pkg/R/optimParams.R +++ b/pkg/R/optimParams.R @@ -115,13 +115,21 @@ setRefClass( c(L$p[1:(K-1)], as.double(L$β), L$b) }, + #TODO: compare with R version? + #D <- diag(d) #matrix of ej vectors + #Y * X + #Y * ( t( apply(X, 1, function(row) row %o% row) ) - Reduce('+', lapply(1:d, function(j) as.double(D[j,] %o% D[j,])), rep(0, d*d))) + #Y * ( t( apply(X, 1, function(row) row %o% row %*% row) ) - Reduce('+', lapply(1:d, function(j) ), rep(0, d*d*d))) computeW = function(θ) { #require(MASS) dd <- d + d^2 + d^3 - W <<- MASS::ginv( matrix( .C("Compute_Omega", - X=as.double(X), Y=Y, M=Moments(θ), pn=as.integer(n), pd=as.integer(d), - W=as.double(W), PACKAGE="morpheus")$W, nrow=dd, ncol=dd ) ) + M <- Moments(θ) + Omega <- matrix( .C("Compute_Omega", + X=as.double(X), Y=as.double(Y), M=as.double(M), + pn=as.integer(n), pd=as.integer(d), + W=as.double(W), PACKAGE="morpheus")$W, nrow=dd, ncol=dd ) + W <<- MASS::ginv(Omega, tol=1e-4) NULL #avoid returning W }, @@ -248,7 +256,6 @@ setRefClass( θ0$b = rep(0, K) else if (any(is.na(θ0$b))) stop("θ0$b cannot have missing values") - # TODO: stopping condition? N iterations? Delta <= epsilon ? for (loop in 1:10) { diff --git a/pkg/src/functions.c b/pkg/src/functions.c index e534c57..f251eb3 100644 --- a/pkg/src/functions.c +++ b/pkg/src/functions.c @@ -54,6 +54,8 @@ void Moments_M3(double* X, double* Y, int* pn, int* pd, double* M3) } } +#include + // W = 1/N sum( t(g(Zi,theta)) g(Zi,theta) ) // with g(Zi, theta) = i-th contribution to all moments (size dim) - real moments void Compute_Omega(double* X, double* Y, double* M, int* pn, int* pd, double* W) @@ -97,6 +99,8 @@ void Compute_Omega(double* X, double* Y, double* M, int* pn, int* pd, double* W) g[j] -= Y[i] * X[mi(i,idx1,n,d)]; g[j] += Y[i] * X[mi(i,idx1,n,d)]*X[mi(i,idx2,n,d)]*X[mi(i,idx3,n,d)] - M[j]; } + + // TODO: 1/n des gj empirique doit tendre vers 0 // Add 1/n t(gi) %*% gi to W for (int j=0; j