X-Git-Url: https://git.auder.net/?p=valse.git;a=blobdiff_plain;f=pkg%2Fsrc%2Fsources%2FEMGrank.c;fp=pkg%2Fsrc%2Fsources%2FEMGrank.c;h=3a9bf94b23a05c443d7cb6f32dd835d19667274f;hp=0000000000000000000000000000000000000000;hb=f87ff0f5116c0c1c59c5608e46563ff0f79e5d43;hpb=53fa233d8fbeaf4d51a4874ba69d8472d01d04ba diff --git a/pkg/src/sources/EMGrank.c b/pkg/src/sources/EMGrank.c new file mode 100644 index 0000000..3a9bf94 --- /dev/null +++ b/pkg/src/sources/EMGrank.c @@ -0,0 +1,307 @@ +#include +#include +#include "utils.h" + +// Compute pseudo-inverse of a square matrix +static Real* pinv(const Real* matrix, int dim) +{ + gsl_matrix* U = gsl_matrix_alloc(dim,dim); + gsl_matrix* V = gsl_matrix_alloc(dim,dim); + gsl_vector* S = gsl_vector_alloc(dim); + gsl_vector* work = gsl_vector_alloc(dim); + Real EPS = 1e-10; //threshold for singular value "== 0" + + //copy matrix into U + copyArray(matrix, U->data, dim*dim); + + //U,S,V = SVD of matrix + gsl_linalg_SV_decomp(U, V, S, work); + gsl_vector_free(work); + + // Obtain pseudo-inverse by V*S^{-1}*t(U) + Real* inverse = (Real*)malloc(dim*dim*sizeof(Real)); + for (int i=0; idata[i*dim+j] * (S->data[j] > EPS ? 1.0/S->data[j] : 0.0) * U->data[ii*dim+j]; + inverse[i*dim+ii] = dotProduct; + } + } + + gsl_matrix_free(U); + gsl_matrix_free(V); + gsl_vector_free(S); + return inverse; +} + +// TODO: comment EMGrank purpose +void EMGrank_core( + // IN parameters + const Real* Pi, // parametre de proportion + const Real* Rho, // parametre initial de variance renormalisé + int mini, // nombre minimal d'itérations dans l'algorithme EM + int maxi, // nombre maximal d'itérations dans l'algorithme EM + const Real* X, // régresseurs + const Real* Y, // réponse + Real tau, // seuil pour accepter la convergence + const int* rank, // vecteur des rangs possibles + // OUT parameters + Real* phi, // parametre de moyenne renormalisé, calculé par l'EM + Real* LLF, // log vraisemblance associé à cet échantillon, pour les valeurs estimées des paramètres + // additional size parameters + int n, // taille de l'echantillon + int p, // nombre de covariables + int m, // taille de Y (multivarié) + int k) // nombre de composantes +{ + // Allocations, initializations + Real* Phi = (Real*)calloc(p*m*k,sizeof(Real)); + Real* hatBetaR = (Real*)malloc(p*m*sizeof(Real)); + int signum; + Real invN = 1.0/n; + int deltaPhiBufferSize = 20; + Real* deltaPhi = (Real*)malloc(deltaPhiBufferSize*sizeof(Real)); + int ite = 0; + Real sumDeltaPhi = 0.0; + Real* YiRhoR = (Real*)malloc(m*sizeof(Real)); + Real* XiPhiR = (Real*)malloc(m*sizeof(Real)); + Real* Xr = (Real*)malloc(n*p*sizeof(Real)); + Real* Yr = (Real*)malloc(n*m*sizeof(Real)); + Real* tXrXr = (Real*)malloc(p*p*sizeof(Real)); + Real* tXrYr = (Real*)malloc(p*m*sizeof(Real)); + gsl_matrix* matrixM = gsl_matrix_alloc(p, m); + gsl_matrix* matrixE = gsl_matrix_alloc(m, m); + gsl_permutation* permutation = gsl_permutation_alloc(m); + gsl_matrix* V = gsl_matrix_alloc(m,m); + gsl_vector* S = gsl_vector_alloc(m); + gsl_vector* work = gsl_vector_alloc(m); + + //Initialize class memberships (all elements in class 0; TODO: randomize ?) + int* Z = (int*)calloc(n, sizeof(int)); + + //Initialize phi to zero, because some M loops might exit before phi affectation + zeroArray(phi, p*m*k); + + while (itetau)) + { + ///////////// + // Etape M // + ///////////// + + //M step: Mise à jour de Beta (et donc phi) + for (int r=0; rdata[j*m+jj] = dotProduct; + } + } + free(invTXrXr); + + //U,S,V = SVD of (t(Xr)Xr)^{-1} * t(Xr) * Yr + gsl_linalg_SV_decomp(matrixM, V, S, work); + + //Set m-rank(r) singular values to zero, and recompose + //best rank(r) approximation of the initial product + for (int j=rank[r]; jdata[j] = 0.0; + + //[intermediate step] Compute hatBetaR = U * S * t(V) + double* U = matrixM->data; //GSL require double precision + for (int j=0; jdata[u] * V->data[jj*m+u]; + hatBetaR[mi(j,jj,p,m)] = dotProduct; + } + } + + //Compute phi(:,:,r) = hatBetaR * Rho(:,:,r) + for (int j=0; jdata[j*m+jj] = Rho[ai(j,jj,r,m,m,k)]; + } + gsl_linalg_LU_decomp(matrixE, permutation, &signum); + Real detRhoR = gsl_linalg_LU_det(matrixE, signum); + + //compute Y(i,:)*Rho(:,:,r) + for (int j=0; j + Real dotProduct = 0.0; + for (int u=0; u maxLogGamIR) + { + Z[i] = r; + maxLogGamIR = logGamIR; + } + sumLLF1 += exp(logGamIR) / pow(2*M_PI,m/2.0); + } + + sumLogLLF2 += log(sumLLF1); + } + + // Assign output variable LLF + *LLF = -invN * sumLogLLF2; + + //newDeltaPhi = max(max((abs(phi-Phi))./(1+abs(phi)))); + Real newDeltaPhi = 0.0; + for (int j=0; j newDeltaPhi) + newDeltaPhi = tmpDist; + } + } + } + + //update distance parameter to check algorithm convergence (delta(phi, Phi)) + //TODO: deltaPhi should be a linked list for perf. + if (ite < deltaPhiBufferSize) + deltaPhi[ite] = newDeltaPhi; + else + { + sumDeltaPhi -= deltaPhi[0]; + for (int u=0; u