X-Git-Url: https://git.auder.net/?p=valse.git;a=blobdiff_plain;f=pkg%2FR%2Fplot_valse.R;fp=pkg%2FR%2Fplot_valse.R;h=0000000000000000000000000000000000000000;hp=ec2302d6ccf47f7ed95ec4cc42b3f9be6295e8ef;hb=e32621012b1660204434a56acc8cf73eac42f477;hpb=ea5860f1b4fc91f06e371a0b26915198474a849d diff --git a/pkg/R/plot_valse.R b/pkg/R/plot_valse.R deleted file mode 100644 index ec2302d..0000000 --- a/pkg/R/plot_valse.R +++ /dev/null @@ -1,89 +0,0 @@ -#' Plot -#' -#' It is a function which plots relevant parameters -#' -#' @param X matrix of covariates (of size n*p) -#' @param Y matrix of responses (of size n*m) -#' @param model the model constructed by valse procedure -#' @param n sample size -#' @return several plots -#' -#' @examples TODO -#' -#' @export -#' -plot_valse <- function(X, Y, model, n, comp = FALSE, k1 = NA, k2 = NA) -{ - require("gridExtra") - require("ggplot2") - require("reshape2") - require("cowplot") - - K <- length(model$pi) - ## regression matrices - gReg <- list() - for (r in 1:K) - { - Melt <- melt(t((model$phi[, , r]))) - gReg[[r]] <- ggplot(data = Melt, aes(x = Var1, y = Var2, fill = value)) + - geom_tile() + scale_fill_gradient2(low = "blue", high = "red", mid = "white", - midpoint = 0, space = "Lab") + ggtitle(paste("Regression matrices in cluster", r)) - } - print(gReg) - - ## Differences between two clusters - if (comp) - { - if (is.na(k1) || is.na(k)) - print("k1 and k2 must be integers, representing the clusters you want to compare") - Melt <- melt(t(model$phi[, , k1] - model$phi[, , k2])) - gDiff <- ggplot(data = Melt, aes(x = Var1, y = Var2, fill = value)) - + geom_tile() - + scale_fill_gradient2(low = "blue", high = "red", mid = "white", midpoint = 0, - space = "Lab") - + ggtitle(paste("Difference between regression matrices in cluster", - k1, "and", k2)) - print(gDiff) - } - - ### Covariance matrices - matCov <- matrix(NA, nrow = dim(model$rho[, , 1])[1], ncol = K) - for (r in 1:K) - matCov[, r] <- diag(model$rho[, , r]) - MeltCov <- melt(matCov) - gCov <- ggplot(data = MeltCov, aes(x = Var1, y = Var2, fill = value)) + geom_tile() - + scale_fill_gradient2(low = "blue", high = "red", mid = "white", midpoint = 0, - space = "Lab") - + ggtitle("Covariance matrices") - print(gCov) - - ### Proportions - gam2 <- matrix(NA, ncol = K, nrow = n) - for (i in 1:n) - gam2[i, ] <- c(model$proba[i, model$affec[i]], model$affec[i]) - - bp <- ggplot(data.frame(gam2), aes(x = X2, y = X1, color = X2, group = X2)) - + geom_boxplot() - + theme(legend.position = "none") - + background_grid(major = "xy", minor = "none") - print(bp) - - ### Mean in each cluster - XY <- cbind(X, Y) - XY_class <- list() - meanPerClass <- matrix(0, ncol = K, nrow = dim(XY)[2]) - for (r in 1:K) - { - XY_class[[r]] <- XY[model$affec == r, ] - if (sum(model$affec == r) == 1) { - meanPerClass[, r] <- XY_class[[r]] - } else { - meanPerClass[, r] <- apply(XY_class[[r]], 2, mean) - } - } - data <- data.frame(mean = as.vector(meanPerClass), - cluster = as.character(rep(1:K, each = dim(XY)[2])), time = rep(1:dim(XY)[2], K)) - g <- ggplot(data, aes(x = time, y = mean, group = cluster, color = cluster)) - print(g + geom_line(aes(linetype = cluster, color = cluster)) - + geom_point(aes(color = cluster)) + ggtitle("Mean per cluster")) -}