X-Git-Url: https://git.auder.net/?p=valse.git;a=blobdiff_plain;f=pkg%2FR%2FinitSmallEM.R;h=39453227c5847f0b4341de18287ae5d773492e3b;hp=fafa2c464ce5a16a87760e9d67374e9a23278cf7;hb=6af1d4897dbab92a7be05068e0e15823378965d9;hpb=ffdf94474d96cdd3e9d304ce809df7e62aa957ed diff --git a/pkg/R/initSmallEM.R b/pkg/R/initSmallEM.R index fafa2c4..3945322 100644 --- a/pkg/R/initSmallEM.R +++ b/pkg/R/initSmallEM.R @@ -1,18 +1,24 @@ -#' initialization of the EM algorithm +#' initSmallEM +#' +#' initialization of the EM algorithm #' #' @param k number of components #' @param X matrix of covariates (of size n*p) #' @param Y matrix of responses (of size n*m) +#' @param fast boolean to enable or not the C function call +#' +#' @return a list with phiInit (the regression parameter reparametrized), +#' rhoInit (the covariance parameter reparametrized), piInit (the proportion parameter is the +#' mixture model), gamInit (the conditional expectation) #' -#' @return a list with phiInit, rhoInit, piInit, gamInit -#' @export -#' @importFrom methods new #' @importFrom stats cutree dist hclust runif -initSmallEM <- function(k, X, Y, fast = TRUE) +#' +#' @export +initSmallEM <- function(k, X, Y, fast) { - n <- nrow(Y) - m <- ncol(Y) + n <- nrow(X) p <- ncol(X) + m <- ncol(Y) nIte <- 20 Zinit1 <- array(0, dim = c(n, nIte)) betaInit1 <- array(0, dim = c(p, m, k, nIte)) @@ -23,25 +29,23 @@ initSmallEM <- function(k, X, Y, fast = TRUE) piInit1 <- matrix(0, nIte, k) gamInit1 <- array(0, dim = c(n, k, nIte)) LLFinit1 <- list() - + # require(MASS) #Moore-Penrose generalized inverse of matrix for (repet in 1:nIte) { distance_clus <- dist(cbind(X, Y)) tree_hier <- hclust(distance_clus) Zinit1[, repet] <- cutree(tree_hier, k) - + for (r in 1:k) { Z <- Zinit1[, repet] - Z_indice <- seq_len(n)[Z == r] #renvoit les indices où Z==r - if (length(Z_indice) == 1) - { - betaInit1[, , r, repet] <- MASS::ginv(crossprod(t(X[Z_indice, ]))) %*% + Z_indice <- seq_len(n)[Z == r] #renvoit les indices ou Z==r + if (length(Z_indice) == 1) { + betaInit1[, , r, repet] <- MASS::ginv(crossprod(t(X[Z_indice, ]))) %*% crossprod(t(X[Z_indice, ]), Y[Z_indice, ]) - } else - { - betaInit1[, , r, repet] <- MASS::ginv(crossprod(X[Z_indice, ])) %*% + } else { + betaInit1[, , r, repet] <- MASS::ginv(crossprod(X[Z_indice, ])) %*% crossprod(X[Z_indice, ], Y[Z_indice, ]) } sigmaInit1[, , r, repet] <- diag(m) @@ -49,34 +53,34 @@ initSmallEM <- function(k, X, Y, fast = TRUE) rhoInit1[, , r, repet] <- solve(sigmaInit1[, , r, repet]) piInit1[repet, r] <- mean(Z == r) } - + for (i in 1:n) { for (r in 1:k) { - dotProduct <- tcrossprod(Y[i, ] %*% rhoInit1[, , r, repet] - X[i, - ] %*% phiInit1[, , r, repet]) - Gam[i, r] <- piInit1[repet, r] * det(rhoInit1[, , r, repet]) * exp(-0.5 * - dotProduct) + dotProduct <- tcrossprod(Y[i, ] %*% rhoInit1[, , r, repet] + - X[i, ] %*% phiInit1[, , r, repet]) + Gam[i, r] <- piInit1[repet, r] * + det(rhoInit1[, , r, repet]) * exp(-0.5 * dotProduct) } sumGamI <- sum(Gam[i, ]) + # TODO: next line is a division by zero if dotProduct is big gamInit1[i, , repet] <- Gam[i, ]/sumGamI } - + miniInit <- 10 maxiInit <- 11 - - init_EMG <- EMGLLF(phiInit1[, , , repet], rhoInit1[, , , repet], piInit1[repet, - ], gamInit1[, , repet], miniInit, maxiInit, gamma = 1, lambda = 0, X, - Y, eps = 1e-04, fast) - LLFEessai <- init_EMG$LLF - LLFinit1[repet] <- LLFEessai[length(LLFEessai)] + + init_EMG <- EMGLLF(phiInit1[, , , repet], rhoInit1[, , , repet], piInit1[repet, ], + gamInit1[, , repet], miniInit, maxiInit, gamma = 1, lambda = 0, X, Y, + eps = 1e-04, fast) + LLFinit1[[repet]] <- init_EMG$llh } b <- which.min(LLFinit1) phiInit <- phiInit1[, , , b] rhoInit <- rhoInit1[, , , b] piInit <- piInit1[b, ] gamInit <- gamInit1[, , b] - - return(list(phiInit = phiInit, rhoInit = rhoInit, piInit = piInit, gamInit = gamInit)) + + list(phiInit = phiInit, rhoInit = rhoInit, piInit = piInit, gamInit = gamInit) }