X-Git-Url: https://git.auder.net/?p=valse.git;a=blobdiff_plain;f=pkg%2FR%2FconstructionModelesLassoMLE.R;h=ba6f125cb16d94c6de8bdc65dd855578398b12c5;hp=6c37751b465d6a6d635f0029a8a5b9f94b201966;hb=43d76c49d2f98490abc782c7e8a8b94baee40247;hpb=2279a641f2bee1db586e7ab1e13726d111d5daaf diff --git a/pkg/R/constructionModelesLassoMLE.R b/pkg/R/constructionModelesLassoMLE.R index 6c37751..ba6f125 100644 --- a/pkg/R/constructionModelesLassoMLE.R +++ b/pkg/R/constructionModelesLassoMLE.R @@ -1,86 +1,91 @@ #' constructionModelesLassoMLE #' -#' TODO: description +#' Construct a collection of models with the Lasso-MLE procedure. +#' +#' @param phiInit an initialization for phi, get by initSmallEM.R +#' @param rhoInit an initialization for rho, get by initSmallEM.R +#' @param piInit an initialization for pi, get by initSmallEM.R +#' @param gamInit an initialization for gam, get by initSmallEM.R +#' @param mini integer, minimum number of iterations in the EM algorithm, by default = 10 +#' @param maxi integer, maximum number of iterations in the EM algorithm, by default = 100 +#' @param gamma integer for the power in the penaly, by default = 1 +#' @param X matrix of covariates (of size n*p) +#' @param Y matrix of responses (of size n*m) +#' @param eps real, threshold to say the EM algorithm converges, by default = 1e-4 +#' @param S output of selectVariables.R +#' @param ncores Number of cores, by default = 3 +#' @param fast TRUE to use compiled C code, FALSE for R code only +#' @param verbose TRUE to show some execution traces +#' +#' @return a list with several models, defined by phi, rho, pi, llh #' -#' @param ... -#' -#' @return ... -#' -#' export -constructionModelesLassoMLE = function(phiInit, rhoInit, piInit, gamInit, mini, maxi, - gamma, X, Y, seuil, tau, selected, ncores=3, verbose=FALSE) +#' @export +constructionModelesLassoMLE = function( phiInit, rhoInit, piInit, gamInit, mini, maxi,gamma, X, Y, + eps, S, ncores=3, fast=TRUE, verbose=FALSE) { - if (ncores > 1) + if (ncores > 1) { - cl = parallel::makeCluster(ncores) - parallel::clusterExport( cl, envir=environment(), - varlist=c("phiInit","rhoInit","gamInit","mini","maxi","gamma","X","Y","seuil", - "tau","selected","ncores","verbose") ) + cl = parallel::makeCluster(ncores, outfile='') + parallel::clusterExport( cl, envir=environment(), + varlist=c("phiInit","rhoInit","gamInit","mini","maxi","gamma","X","Y","eps", + "S","ncores","fast","verbose") ) } # Individual model computation computeAtLambda <- function(lambda) { if (ncores > 1) - require("valse") #// nodes start with an ampty environment + require("valse") #nodes start with an empty environment - if (verbose) + if (verbose) print(paste("Computations for lambda=",lambda)) n = dim(X)[1] p = dim(phiInit)[1] m = dim(phiInit)[2] k = dim(phiInit)[3] - - sel.lambda = selected[[lambda]] + sel.lambda = S[[lambda]]$selected # col.sel = which(colSums(sel.lambda)!=0) #if boolean matrix col.sel <- which( sapply(sel.lambda,length) > 0 ) #if list of selected vars - if (length(col.sel) == 0) return (NULL) # lambda == 0 because we compute the EMV: no penalization here res = EMGLLF(phiInit[col.sel,,],rhoInit,piInit,gamInit,mini,maxi,gamma,0, - X[,col.sel],Y,tau) + X[,col.sel], Y, eps, fast) # Eval dimension from the result + selected - phiLambda2 = res_EM$phi - rhoLambda = res_EM$rho - piLambda = res_EM$pi - phiLambda = array(0, dim = c(p,m,k)) + phiLambda2 = res$phi + rhoLambda = res$rho + piLambda = res$pi + phiLambda = array(0, dim = c(p,m,k)) for (j in seq_along(col.sel)) - phiLambda[col.sel[j],,] = phiLambda2[j,,] - - dimension = 0 - for (j in 1:p) - { - b = setdiff(1:m, sel.lambda[,j]) - if (length(b) > 0) - phiLambda[j,b,] = 0.0 - dimension = dimension + sum(sel.lambda[,j]!=0) - } + phiLambda[col.sel[j],sel.lambda[[j]],] = phiLambda2[j,sel.lambda[[j]],] + dimension = length(unlist(sel.lambda)) - # on veut calculer la vraisemblance avec toutes nos estimations + # Computation of the loglikelihood densite = vector("double",n) for (r in 1:k) { - delta = Y%*%rhoLambda[,,r] - (X[, col.sel]%*%phiLambda[col.sel,,r]) + if (length(col.sel)==1){ + delta = (Y%*%rhoLambda[,,r] - (X[, col.sel]%*%t(phiLambda[col.sel,,r]))) + } else delta = (Y%*%rhoLambda[,,r] - (X[, col.sel]%*%phiLambda[col.sel,,r])) densite = densite + piLambda[r] * - det(rhoLambda[,,r])/(sqrt(2*base::pi))^m * exp(-tcrossprod(delta)/2.0) + det(rhoLambda[,,r])/(sqrt(2*base::pi))^m * exp(-diag(tcrossprod(delta))/2.0) } llhLambda = c( sum(log(densite)), (dimension+m+1)*k-1 ) list("phi"= phiLambda, "rho"= rhoLambda, "pi"= piLambda, "llh" = llhLambda) } - #Pour chaque lambda de la grille, on calcule les coefficients - out = + # For each lambda, computation of the parameters + out = if (ncores > 1) - parLapply(cl, seq_along(glambda), computeAtLambda) + parLapply(cl, 1:length(S), computeAtLambda) else - lapply(seq_along(glambda), computeAtLambda) + lapply(1:length(S), computeAtLambda) if (ncores > 1) - parallel::stopCluster(cl) + parallel::stopCluster(cl) out }