X-Git-Url: https://git.auder.net/?p=valse.git;a=blobdiff_plain;f=pkg%2FR%2FconstructionModelesLassoMLE.R;h=0584382fa4a602a2651d8022d1635bab6178ea7d;hp=c55035e8540da188b8d19147a493fedb99529af3;hb=fb3557f39487d9631ffde30f20b70938d2a6ab0c;hpb=465c0e07fbf8363a2625f26681fa7ba31bad82b7 diff --git a/pkg/R/constructionModelesLassoMLE.R b/pkg/R/constructionModelesLassoMLE.R index c55035e..0584382 100644 --- a/pkg/R/constructionModelesLassoMLE.R +++ b/pkg/R/constructionModelesLassoMLE.R @@ -1,7 +1,7 @@ -#' constructionModelesLassoMLE +#' constructionModelesLassoMLE #' #' Construct a collection of models with the Lasso-MLE procedure. -#' +#' #' @param phiInit an initialization for phi, get by initSmallEM.R #' @param rhoInit an initialization for rho, get by initSmallEM.R #' @param piInit an initialization for pi, get by initSmallEM.R @@ -16,43 +16,44 @@ #' @param ncores Number of cores, by default = 3 #' @param fast TRUE to use compiled C code, FALSE for R code only #' @param verbose TRUE to show some execution traces -#' +#' #' @return a list with several models, defined by phi, rho, pi, llh #' #' @export -constructionModelesLassoMLE <- function(phiInit, rhoInit, piInit, gamInit, mini, - maxi, gamma, X, Y, eps, S, ncores = 3, fast, verbose) +constructionModelesLassoMLE <- function(phiInit, rhoInit, piInit, gamInit, mini, + maxi, gamma, X, Y, eps, S, ncores, fast, verbose) { if (ncores > 1) { cl <- parallel::makeCluster(ncores, outfile = "") - parallel::clusterExport(cl, envir = environment(), varlist = c("phiInit", - "rhoInit", "gamInit", "mini", "maxi", "gamma", "X", "Y", "eps", "S", + parallel::clusterExport(cl, envir = environment(), varlist = c("phiInit", + "rhoInit", "gamInit", "mini", "maxi", "gamma", "X", "Y", "eps", "S", "ncores", "fast", "verbose")) } # Individual model computation computeAtLambda <- function(lambda) { - if (ncores > 1) + if (ncores > 1) require("valse") #nodes start with an empty environment - if (verbose) + if (verbose) print(paste("Computations for lambda=", lambda)) - n <- dim(X)[1] - p <- dim(phiInit)[1] - m <- dim(phiInit)[2] - k <- dim(phiInit)[3] + n <- nrow(X) + p <- ncol(X) + m <- ncol(Y) + k <- length(piInit) sel.lambda <- S[[lambda]]$selected # col.sel = which(colSums(sel.lambda)!=0) #if boolean matrix col.sel <- which(sapply(sel.lambda, length) > 0) #if list of selected vars - if (length(col.sel) == 0) + if (length(col.sel) == 0) return(NULL) # lambda == 0 because we compute the EMV: no penalization here - res <- EMGLLF(array(phiInit[col.sel, , ],dim=c(length(col.sel),m,k)), rhoInit, - piInit, gamInit, mini, maxi, gamma, 0, as.matrix(X[, col.sel]), Y, eps, fast) + res <- EMGLLF(array(phiInit[col.sel, , ], dim=c(length(col.sel),m,k)), + rhoInit, piInit, gamInit, mini, maxi, gamma, 0, + as.matrix(X[, col.sel]), Y, eps, fast) # Eval dimension from the result + selected phiLambda2 <- res$phi @@ -63,36 +64,39 @@ constructionModelesLassoMLE <- function(phiInit, rhoInit, piInit, gamInit, mini, phiLambda[col.sel[j], sel.lambda[[j]], ] <- phiLambda2[j, sel.lambda[[j]], ] dimension <- length(unlist(sel.lambda)) - ## Computation of the loglikelihood - # Precompute det(rhoLambda[,,r]) for r in 1...k - detRho <- sapply(1:k, function(r) det(rhoLambda[, , r])) - sumLogLLH <- 0 + ## Affectations + Gam <- matrix(0, ncol = length(piLambda), nrow = n) for (i in 1:n) { - # Update gam[,]; use log to avoid numerical problems - logGam <- sapply(1:k, function(r) { - log(piLambda[r]) + log(detRho[r]) - 0.5 * - sum((Y[i, ] %*% rhoLambda[, , r] - X[i, ] %*% phiLambda[, , r])^2) - }) - - logGam <- logGam - max(logGam) #adjust without changing proportions - gam <- exp(logGam) - norm_fact <- sum(gam) - sumLogLLH <- sumLogLLH + log(norm_fact) - log((2 * base::pi)^(m/2)) + for (r in 1:length(piLambda)) + { + sqNorm2 <- sum((Y[i, ] %*% rhoLambda[, , r] - X[i, ] %*% phiLambda[, , r])^2) + Gam[i, r] <- piLambda[r] * exp(-0.5 * sqNorm2) * det(rhoLambda[, , r]) + } } - llhLambda <- c(sumLogLLH/n, (dimension + m + 1) * k - 1) - # densite <- vector("double", n) - # for (r in 1:k) + Gam2 <- Gam/rowSums(Gam) + affec <- apply(Gam2, 1, which.max) + proba <- Gam2 + LLH <- c(sum(log(apply(Gam,1,sum))), (dimension + m + 1) * k - 1) + # ## Computation of the loglikelihood + # # Precompute det(rhoLambda[,,r]) for r in 1...k + # detRho <- sapply(1:k, function(r) gdet(rhoLambda[, , r])) + # sumLogLLH <- 0 + # for (i in 1:n) # { - # if (length(col.sel) == 1) - # { - # delta <- (Y %*% rhoLambda[, , r] - (X[, col.sel] %*% t(phiLambda[col.sel, , r]))) - # } else delta <- (Y %*% rhoLambda[, , r] - (X[, col.sel] %*% phiLambda[col.sel, , r])) - # densite <- densite + piLambda[r] * det(rhoLambda[, , r])/(sqrt(2 * base::pi))^m * - # exp(-rowSums(delta^2)/2) + # # Update gam[,]; use log to avoid numerical problems + # logGam <- sapply(1:k, function(r) { + # log(piLambda[r]) + log(detRho[r]) - 0.5 * + # sum((Y[i, ] %*% rhoLambda[, , r] - X[i, ] %*% phiLambda[, , r])^2) + # }) + # + # #logGam <- logGam - max(logGam) #adjust without changing proportions -> change the LLH + # gam <- exp(logGam) + # norm_fact <- sum(gam) + # sumLogLLH <- sumLogLLH + log(norm_fact) - m/2* log(2 * base::pi) # } - # llhLambda <- c(mean(log(densite)), (dimension + m + 1) * k - 1) - list(phi = phiLambda, rho = rhoLambda, pi = piLambda, llh = llhLambda) + #llhLambda <- c(-sumLogLLH/n, (dimension + m + 1) * k - 1) + list(phi = phiLambda, rho = rhoLambda, pi = piLambda, llh = LLH, affec = affec, proba = proba) } # For each lambda, computation of the parameters @@ -103,7 +107,7 @@ constructionModelesLassoMLE <- function(phiInit, rhoInit, piInit, gamInit, mini, lapply(1:length(S), computeAtLambda) } - if (ncores > 1) + if (ncores > 1) parallel::stopCluster(cl) out