X-Git-Url: https://git.auder.net/?p=valse.git;a=blobdiff_plain;f=pkg%2FR%2FEMGLLF.R;h=0a279f0bf56f92b84acbbddfab6bc8de1c07dd1a;hp=ee7a4fc99be6fd041f9ebde45a83722c80f09bc0;hb=1b698c1619dbcf5b3a0608dc894d249945d2bce3;hpb=f7e157cdbcf2d60224c2d6773da9c698174e9aee diff --git a/pkg/R/EMGLLF.R b/pkg/R/EMGLLF.R index ee7a4fc..0a279f0 100644 --- a/pkg/R/EMGLLF.R +++ b/pkg/R/EMGLLF.R @@ -24,14 +24,14 @@ #' @export EMGLLF <- function(phiInit, rhoInit, piInit, gamInit, mini, maxi, gamma, lambda, X, Y, eps, fast = TRUE) - { +{ if (!fast) { # Function in R return(.EMGLLF_R(phiInit, rhoInit, piInit, gamInit, mini, maxi, gamma, lambda, X, Y, eps)) } - + # Function in C n <- nrow(X) #nombre d'echantillons p <- ncol(X) #nombre de covariables @@ -46,22 +46,21 @@ EMGLLF <- function(phiInit, rhoInit, piInit, gamInit, mini, maxi, gamma, lambda, # R version - slow but easy to read .EMGLLF_R <- function(phiInit, rhoInit, piInit, gamInit, mini, maxi, gamma, lambda, X2, Y, eps) - { +{ # Matrix dimensions n <- dim(Y)[1] - if (length(dim(phiInit)) == 2) - { + if (length(dim(phiInit)) == 2) { p <- 1 m <- dim(phiInit)[1] k <- dim(phiInit)[2] - } else - { + } else { p <- dim(phiInit)[1] m <- dim(phiInit)[2] k <- dim(phiInit)[3] } X <- matrix(nrow = n, ncol = p) X[1:n, 1:p] <- X2 + # Outputs phi <- array(NA, dim = c(p, m, k)) phi[1:p, , ] <- phiInit @@ -69,7 +68,7 @@ EMGLLF <- function(phiInit, rhoInit, piInit, gamInit, mini, maxi, gamma, lambda, pi <- piInit llh <- -Inf S <- array(0, dim = c(p, m, k)) - + # Algorithm variables gam <- gamInit Gram2 <- array(0, dim = c(p, p, k)) @@ -77,33 +76,37 @@ EMGLLF <- function(phiInit, rhoInit, piInit, gamInit, mini, maxi, gamma, lambda, X2 <- array(0, dim = c(n, p, k)) Y2 <- array(0, dim = c(n, m, k)) EPS <- 1e-15 - + for (ite in 1:maxi) { # Remember last pi,rho,phi values for exit condition in the end of loop Phi <- phi Rho <- rho Pi <- pi - + # Computations associated to X and Y for (r in 1:k) { - for (mm in 1:m) Y2[, mm, r] <- sqrt(gam[, r]) * Y[, mm] - for (i in 1:n) X2[i, , r] <- sqrt(gam[i, r]) * X[i, ] - for (mm in 1:m) ps2[, mm, r] <- crossprod(X2[, , r], Y2[, mm, r]) + for (mm in 1:m) + Y2[, mm, r] <- sqrt(gam[, r]) * Y[, mm] + for (i in 1:n) + X2[i, , r] <- sqrt(gam[i, r]) * X[i, ] + for (mm in 1:m) + ps2[, mm, r] <- crossprod(X2[, , r], Y2[, mm, r]) for (j in 1:p) { - for (s in 1:p) Gram2[j, s, r] <- crossprod(X2[, j, r], X2[, s, r]) + for (s in 1:p) + Gram2[j, s, r] <- crossprod(X2[, j, r], X2[, s, r]) } } - - ######### M step # - + + ## M step + # For pi b <- sapply(1:k, function(r) sum(abs(phi[, , r]))) gam2 <- colSums(gam) a <- sum(gam %*% log(pi)) - + # While the proportions are nonpositive kk <- 0 pi2AllPositive <- FALSE @@ -113,66 +116,64 @@ EMGLLF <- function(phiInit, rhoInit, piInit, gamInit, mini, maxi, gamma, lambda, pi2AllPositive <- all(pi2 >= 0) kk <- kk + 1 } - + # t(m) is the largest value in the grid O.1^k such that it is nonincreasing - while (kk < 1000 && -a/n + lambda * sum(pi^gamma * b) < -sum(gam2 * log(pi2))/n + - lambda * sum(pi2^gamma * b)) - { + while (kk < 1000 && -a/n + lambda * sum(pi^gamma * b) < + -sum(gam2 * log(pi2))/n + lambda * sum(pi2^gamma * b)) + { pi2 <- pi + 0.1^kk * (1/n * gam2 - pi) kk <- kk + 1 } t <- 0.1^kk pi <- (pi + t * (pi2 - pi))/sum(pi + t * (pi2 - pi)) - + # For phi and rho for (r in 1:k) { for (mm in 1:m) { ps <- 0 - for (i in 1:n) ps <- ps + Y2[i, mm, r] * sum(X2[i, , r] * phi[, mm, - r]) + for (i in 1:n) + ps <- ps + Y2[i, mm, r] * sum(X2[i, , r] * phi[, mm, r]) nY2 <- sum(Y2[, mm, r]^2) rho[mm, mm, r] <- (ps + sqrt(ps^2 + 4 * nY2 * gam2[r]))/(2 * nY2) } } - + for (r in 1:k) { for (j in 1:p) { for (mm in 1:m) { - S[j, mm, r] <- -rho[mm, mm, r] * ps2[j, mm, r] + sum(phi[-j, mm, - r] * Gram2[j, -j, r]) - if (abs(S[j, mm, r]) <= n * lambda * (pi[r]^gamma)) - { - phi[j, mm, r] <- 0 - } else if (S[j, mm, r] > n * lambda * (pi[r]^gamma)) - { - phi[j, mm, r] <- (n * lambda * (pi[r]^gamma) - S[j, mm, r])/Gram2[j, - j, r] - } else - { - phi[j, mm, r] <- -(n * lambda * (pi[r]^gamma) + S[j, mm, r])/Gram2[j, - j, r] + S[j, mm, r] <- -rho[mm, mm, r] * ps2[j, mm, r] + + sum(phi[-j, mm, r] * Gram2[j, -j, r]) + if (abs(S[j, mm, r]) <= n * lambda * (pi[r]^gamma)) { + phi[j, mm, r] <- 0 + } else if (S[j, mm, r] > n * lambda * (pi[r]^gamma)) { + phi[j, mm, r] <- (n * lambda * (pi[r]^gamma) - S[j, mm, r])/Gram2[j, j, r] + } else { + phi[j, mm, r] <- -(n * lambda * (pi[r]^gamma) + S[j, mm, r])/Gram2[j, j, r] } } } } - + ######## E step# - + # Precompute det(rho[,,r]) for r in 1...k detRho <- sapply(1:k, function(r) det(rho[, , r])) gam1 <- matrix(0, nrow = n, ncol = k) for (i in 1:n) { # Update gam[,] - for (r in 1:k) gam1[i, r] <- pi[r] * exp(-0.5 * sum((Y[i, ] %*% rho[, - , r] - X[i, ] %*% phi[, , r])^2)) * detRho[r] + for (r in 1:k) + { + gam1[i, r] <- pi[r] * exp(-0.5 + * sum((Y[i, ] %*% rho[, , r] - X[i, ] %*% phi[, , r])^2)) * detRho[r] + } } - gam <- gam1/rowSums(gam1) + gam <- gam1 / rowSums(gam1) sumLogLLH <- sum(log(rowSums(gam)) - log((2 * base::pi)^(m/2))) sumPen <- sum(pi^gamma * b) last_llh <- llh @@ -182,10 +183,10 @@ EMGLLF <- function(phiInit, rhoInit, piInit, gamInit, mini, maxi, gamma, lambda, Dist2 <- max((abs(rho - Rho))/(1 + abs(rho))) Dist3 <- max((abs(pi - Pi))/(1 + abs(Pi))) dist2 <- max(Dist1, Dist2, Dist3) - + if (ite >= mini && (dist >= eps || dist2 >= sqrt(eps))) break } - + list(phi = phi, rho = rho, pi = pi, llh = llh, S = S) }