X-Git-Url: https://git.auder.net/?p=valse.git;a=blobdiff_plain;f=R%2FinitSmallEM.R;h=e2157b254b6bfdbd5e369e02d304962e0fb44197;hp=b70eea92d65fd7bdb0bb115eb90a1cc32ea8831f;hb=31463ab809c0195273ff2760606ea65361d721ab;hpb=71a8ee557968aa1130b9c5e47690cf73631474a4 diff --git a/R/initSmallEM.R b/R/initSmallEM.R index b70eea9..e2157b2 100644 --- a/R/initSmallEM.R +++ b/R/initSmallEM.R @@ -13,7 +13,7 @@ initSmallEM = function(k,X,Y,tau) m = ncol(Y) p = ncol(X) - Zinit1 = array(0, dim=c(n,20)) #doute sur la taille + Zinit1 = array(0, dim=c(n,20)) betaInit1 = array(0, dim=c(p,m,k,20)) sigmaInit1 = array(0, dim = c(m,m,k,20)) phiInit1 = array(0, dim = c(p,m,k,20)) @@ -24,31 +24,30 @@ initSmallEM = function(k,X,Y,tau) LLFinit1 = list() require(MASS) #Moore-Penrose generalized inverse of matrix - require(mclust) # K-means with selection of K for(repet in 1:20) { - clusters = Mclust(X,k) #default distance : euclidean #Mclust(matrix(c(X,Y)),k) - Zinit1[,repet] = clusters$classification - + distance_clus = dist(X) + tree_hier = hclust(distance_clus) + Zinit1[,repet] = cutree(tree_hier, k) + for(r in 1:k) { Z = Zinit1[,repet] - Z_bin = vec_bin(Z,r) - Z_vec = Z_bin$vec #vecteur 0 et 1 aux endroits o? Z==r - Z_indice = Z_bin$indice #renvoit les indices o? Z==r + Z_indice = seq_len(n)[Z == r] #renvoit les indices où Z==r - betaInit1[,,r,repet] = ginv( crossprod(X[Z_indice,]) ) %*% crossprod(X[Z_indice,], Y[Z_indice,]) + betaInit1[,,r,repet] = ginv(crossprod(X[Z_indice,])) %*% + crossprod(X[Z_indice,], Y[Z_indice,]) sigmaInit1[,,r,repet] = diag(m) - phiInit1[,,r,repet] = betaInit1[,,r,repet]/sigmaInit1[,,r,repet] + phiInit1[,,r,repet] = betaInit1[,,r,repet] #/ sigmaInit1[,,r,repet] rhoInit1[,,r,repet] = solve(sigmaInit1[,,r,repet]) - piInit1[repet,r] = sum(Z_vec)/n + piInit1[repet,r] = mean(Z == r) } for(i in 1:n) { for(r in 1:k) { - dotProduct = (Y[i,]%*%rhoInit1[,,r,repet]-X[i,]%*%phiInit1[,,r,repet]) %*% (Y[i,]%*%rhoInit1[,,r,repet]-X[i,]%*%phiInit1[,,r,repet]) + dotProduct = tcrossprod(Y[i,]%*%rhoInit1[,,r,repet]-X[i,]%*%phiInit1[,,r,repet]) Gam[i,r] = piInit1[repet,r]*det(rhoInit1[,,r,repet])*exp(-0.5*dotProduct) } sumGamI = sum(Gam[i,]) @@ -59,7 +58,7 @@ initSmallEM = function(k,X,Y,tau) maxiInit = 11 new_EMG = .Call("EMGLLF_core",phiInit1[,,,repet],rhoInit1[,,,repet],piInit1[repet,], - gamInit1[,,repet],miniInit,maxiInit,1,0,X,Y,tau) + gamInit1[,,repet],miniInit,maxiInit,1,0,X,Y,tau) LLFEessai = new_EMG$LLF LLFinit1[repet] = LLFEessai[length(LLFEessai)] }