Add 'fast' argument to select C code or R code
[valse.git] / test / generate_test_data / EMGLLF.R
diff --git a/test/generate_test_data/EMGLLF.R b/test/generate_test_data/EMGLLF.R
deleted file mode 100644 (file)
index 09ae2e3..0000000
+++ /dev/null
@@ -1,143 +0,0 @@
-EMGLLF_R = function(phiInit,rhoInit,piInit,gamInit,mini,maxi,gamma,lambda,X,Y,tau)
-{
-       # Matrix dimensions
-       n = dim(X)[1]
-       p = dim(phiInit)[1]
-       m = dim(phiInit)[2]
-       k = dim(phiInit)[3]
-
-       # Outputs
-       phi = phiInit
-       rho = rhoInit
-       pi = piInit
-       llh = -Inf
-       S = array(0, dim=c(p,m,k))
-
-       # Algorithm variables
-       gam = gamInit
-       Gram2 = array(0, dim=c(p,p,k))
-       ps2 = array(0, dim=c(p,m,k))
-       X2 = array(0, dim=c(n,p,k))
-       Y2 = array(0, dim=c(n,m,k))
-       EPS = 1e-15
-
-       for (ite in 1:maxi)
-       {
-               # Remember last pi,rho,phi values for exit condition in the end of loop
-               Phi = phi
-               Rho = rho
-               Pi = pi
-
-               # Calcul associé à Y et X
-               for (r in 1:k)
-               {
-                       for (mm in 1:m)
-                               Y2[,mm,r] = sqrt(gam[,r]) * Y[,mm]
-                       for (i in 1:n)
-                               X2[i,,r] = sqrt(gam[i,r]) * X[i,]
-                       for (mm in 1:m)
-                               ps2[,mm,r] = crossprod(X2[,,r],Y2[,mm,r])
-                       for (j in 1:p)
-                       {
-                               for (s in 1:p)
-                                       Gram2[j,s,r] = crossprod(X2[,j,r], X2[,s,r])
-                       }
-               }
-
-               ##########
-               #Etape M #
-               ##########
-
-               # Pour pi
-               b = sapply( 1:k, function(r) sum(abs(phi[,,r])) )
-               gam2 = colSums(gam)
-               a = sum(gam %*% log(pi))
-
-               # Tant que les props sont negatives
-               kk = 0
-               pi2AllPositive = FALSE
-               while (!pi2AllPositive)
-               {
-                       pi2 = pi + 0.1^kk * ((1/n)*gam2 - pi)
-                       pi2AllPositive = all(pi2 >= 0)
-                       kk = kk+1
-               }
-
-               # t(m) la plus grande valeur dans la grille O.1^k tel que ce soit décroissante ou constante
-               while( kk < 1000 && -a/n + lambda * sum(pi^gamma * b) <
-                       -sum(gam2 * log(pi2))/n + lambda * sum(pi2^gamma * b) )
-               {
-                       pi2 = pi + 0.1^kk * (1/n*gam2 - pi)
-                       kk = kk + 1
-               }
-               t = 0.1^kk
-               pi = (pi + t*(pi2-pi)) / sum(pi + t*(pi2-pi))
-
-               #Pour phi et rho
-               for (r in 1:k)
-               {
-                       for (mm in 1:m)
-                       {
-                               ps = 0
-                               for (i in 1:n)
-                                       ps = ps + Y2[i,mm,r] * sum(X2[i,,r] * phi[,mm,r])
-                               nY2 = sum(Y2[,mm,r]^2)
-                               rho[mm,mm,r] = (ps+sqrt(ps^2+4*nY2*gam2[r])) / (2*nY2)
-                       }
-               }
-
-               for (r in 1:k)
-               {
-                       for (j in 1:p)
-                       {
-                               for (mm in 1:m)
-                               {
-                                       S[j,mm,r] = -rho[mm,mm,r]*ps2[j,mm,r] + sum(phi[-j,mm,r] * Gram2[j,-j,r])
-                                       if (abs(S[j,mm,r]) <= n*lambda*(pi[r]^gamma))
-                                               phi[j,mm,r]=0
-                                       else if(S[j,mm,r] > n*lambda*(pi[r]^gamma))
-                                               phi[j,mm,r] = (n*lambda*(pi[r]^gamma)-S[j,mm,r]) / Gram2[j,j,r]
-                                       else
-                                               phi[j,mm,r] = -(n*lambda*(pi[r]^gamma)+S[j,mm,r]) / Gram2[j,j,r]
-                               }
-                       }
-               }
-
-               ##########
-               #Etape E #
-               ##########
-
-               # Precompute det(rho[,,r]) for r in 1...k
-               detRho = sapply(1:k, function(r) det(rho[,,r]))
-
-               sumLogLLH = 0
-               for (i in 1:n)
-               {
-                       # Update gam[,]
-                       sumGamI = 0
-                       for (r in 1:k)
-                       {
-                               gam[i,r] = pi[r]*exp(-0.5*sum((Y[i,]%*%rho[,,r]-X[i,]%*%phi[,,r])^2))*detRho[r]
-                               sumGamI = sumGamI + gam[i,r]
-                       }
-                       sumLogLLH = sumLogLLH + log(sumGamI) - log((2*base::pi)^(m/2))
-                       if (sumGamI > EPS) #else: gam[i,] is already ~=0
-                               gam[i,] = gam[i,] / sumGamI
-               }
-
-               sumPen = sum(pi^gamma * b)
-               last_llh = llh
-               llh = -sumLogLLH/n + lambda*sumPen
-               dist = ifelse( ite == 1, llh, (llh-last_llh) / (1+abs(llh)) )
-               Dist1 = max( (abs(phi-Phi)) / (1+abs(phi)) )
-               Dist2 = max( (abs(rho-Rho)) / (1+abs(rho)) )
-               Dist3 = max( (abs(pi-Pi)) / (1+abs(Pi)) )
-               dist2 = max(Dist1,Dist2,Dist3)
-
-               if (ite >= mini && (dist >= tau || dist2 >= sqrt(tau)))
-                       break
-       }
-
-       affec = apply(gam, 1, which.max)
-       list( "phi"=phi, "rho"=rho, "pi"=pi, "llh"=llh, "S"=S, "affec"=affec )
-}