essai fusion
[valse.git] / pkg / src / sources / EMGLLF.c
diff --git a/pkg/src/sources/EMGLLF.c b/pkg/src/sources/EMGLLF.c
deleted file mode 100644 (file)
index d2f5a8e..0000000
+++ /dev/null
@@ -1,412 +0,0 @@
-#include "utils.h"
-#include <stdlib.h>
-#include <math.h>
-#include <gsl/gsl_linalg.h>
-
-// TODO: don't recompute indexes ai(...) and mi(...) when possible
-void EMGLLF_core(
-       // IN parameters
-       const Real* phiInit, // parametre initial de moyenne renormalisé
-       const Real* rhoInit, // parametre initial de variance renormalisé
-       const Real* piInit,      // parametre initial des proportions
-       const Real* gamInit, // paramètre initial des probabilités a posteriori de chaque échantillon
-       int mini, // nombre minimal d'itérations dans l'algorithme EM
-       int maxi, // nombre maximal d'itérations dans l'algorithme EM
-       Real gamma, // puissance des proportions dans la pénalisation pour un Lasso adaptatif
-       Real lambda, // valeur du paramètre de régularisation du Lasso
-       const Real* X, // régresseurs
-       const Real* Y, // réponse
-       Real tau, // seuil pour accepter la convergence
-       // OUT parameters (all pointers, to be modified)
-       Real* phi, // parametre de moyenne renormalisé, calculé par l'EM
-       Real* rho, // parametre de variance renormalisé, calculé par l'EM
-       Real* pi, // parametre des proportions renormalisé, calculé par l'EM
-       Real* llh, // (derniere) log vraisemblance associée à cet échantillon,
-                  // pour les valeurs estimées des paramètres
-       Real* S,
-       int* affec,
-       // additional size parameters
-       int n, // nombre d'echantillons
-       int p, // nombre de covariables
-       int m, // taille de Y (multivarié)
-       int k) // nombre de composantes dans le mélange
-{
-       //Initialize outputs
-       copyArray(phiInit, phi, p*m*k);
-       copyArray(rhoInit, rho, m*m*k);
-       copyArray(piInit, pi, k);
-       //S is already allocated, and doesn't need to be 'zeroed'
-
-       //Other local variables: same as in R
-       Real* gam = (Real*)malloc(n*k*sizeof(Real));
-       copyArray(gamInit, gam, n*k);
-       Real* Gram2 = (Real*)malloc(p*p*k*sizeof(Real));
-       Real* ps2 = (Real*)malloc(p*m*k*sizeof(Real));
-       Real* b = (Real*)malloc(k*sizeof(Real));
-       Real* X2 = (Real*)malloc(n*p*k*sizeof(Real));
-       Real* Y2 = (Real*)malloc(n*m*k*sizeof(Real));
-       *llh = -INFINITY;
-       Real* pi2 = (Real*)malloc(k*sizeof(Real));
-       const Real EPS = 1e-15;
-       // Additional (not at this place, in R file)
-       Real* gam2 = (Real*)malloc(k*sizeof(Real));
-       Real* sqNorm2 = (Real*)malloc(k*sizeof(Real));
-       Real* detRho = (Real*)malloc(k*sizeof(Real));
-       gsl_matrix* matrix = gsl_matrix_alloc(m, m);
-       gsl_permutation* permutation = gsl_permutation_alloc(m);
-       Real* YiRhoR = (Real*)malloc(m*sizeof(Real));
-       Real* XiPhiR = (Real*)malloc(m*sizeof(Real));
-       const Real gaussConstM = pow(2.*M_PI,m/2.);
-       Real* Phi = (Real*)malloc(p*m*k*sizeof(Real));
-       Real* Rho = (Real*)malloc(m*m*k*sizeof(Real));
-       Real* Pi = (Real*)malloc(k*sizeof(Real));
-
-       for (int ite=1; ite<=maxi; ite++)
-       {
-               copyArray(phi, Phi, p*m*k);
-               copyArray(rho, Rho, m*m*k);
-               copyArray(pi, Pi, k);
-
-               // Calculs associés a Y et X
-               for (int r=0; r<k; r++)
-               {
-                       for (int mm=0; mm<m; mm++)
-                       {
-                               //Y2[,mm,r] = sqrt(gam[,r]) * Y[,mm]
-                               for (int u=0; u<n; u++)
-                                       Y2[ai(u,mm,r,n,m,k)] = sqrt(gam[mi(u,r,n,k)]) * Y[mi(u,mm,n,m)];
-                       }
-                       for (int i=0; i<n; i++)
-                       {
-                               //X2[i,,r] = sqrt(gam[i,r]) * X[i,]
-                               for (int u=0; u<p; u++)
-                                       X2[ai(i,u,r,n,p,k)] = sqrt(gam[mi(i,r,n,k)]) * X[mi(i,u,n,p)];
-                       }
-                       for (int mm=0; mm<m; mm++)
-                       {
-                               //ps2[,mm,r] = crossprod(X2[,,r],Y2[,mm,r])
-                               for (int u=0; u<p; u++)
-                               {
-                                       Real dotProduct = 0.;
-                                       for (int v=0; v<n; v++)
-                                               dotProduct += X2[ai(v,u,r,n,p,k)] * Y2[ai(v,mm,r,n,m,k)];
-                                       ps2[ai(u,mm,r,p,m,k)] = dotProduct;
-                               }
-                       }
-                       for (int j=0; j<p; j++)
-                       {
-                               for (int s=0; s<p; s++)
-                               {
-                                       //Gram2[j,s,r] = crossprod(X2[,j,r], X2[,s,r])
-                                       Real dotProduct = 0.;
-                                       for (int u=0; u<n; u++)
-                                               dotProduct += X2[ai(u,j,r,n,p,k)] * X2[ai(u,s,r,n,p,k)];
-                                       Gram2[ai(j,s,r,p,p,k)] = dotProduct;
-                               }
-                       }
-               }
-
-               /////////////
-               // Etape M //
-               /////////////
-
-               // Pour pi
-               for (int r=0; r<k; r++)
-               {
-                       //b[r] = sum(abs(phi[,,r]))
-                       Real sumAbsPhi = 0.;
-                       for (int u=0; u<p; u++)
-                               for (int v=0; v<m; v++)
-                                       sumAbsPhi += fabs(phi[ai(u,v,r,p,m,k)]);
-                       b[r] = sumAbsPhi;
-               }
-               //gam2 = colSums(gam)
-               for (int u=0; u<k; u++)
-               {
-                       Real sumOnColumn = 0.;
-                       for (int v=0; v<n; v++)
-                               sumOnColumn += gam[mi(v,u,n,k)];
-                       gam2[u] = sumOnColumn;
-               }
-               //a = sum(gam %*% log(pi))
-               Real a = 0.;
-               for (int u=0; u<n; u++)
-               {
-                       Real dotProduct = 0.;
-                       for (int v=0; v<k; v++)
-                               dotProduct += gam[mi(u,v,n,k)] * log(pi[v]);
-                       a += dotProduct;
-               }
-
-               //tant que les proportions sont negatives
-               int kk = 0,
-                       pi2AllPositive = 0;
-               Real invN = 1./n;
-               while (!pi2AllPositive)
-               {
-                       //pi2 = pi + 0.1^kk * ((1/n)*gam2 - pi)
-                       Real pow_01_kk = pow(0.1,kk);
-                       for (int r=0; r<k; r++)
-                               pi2[r] = pi[r] + pow_01_kk * (invN*gam2[r] - pi[r]);
-                       //pi2AllPositive = all(pi2 >= 0)
-                       pi2AllPositive = 1;
-                       for (int r=0; r<k; r++)
-                       {
-                               if (pi2[r] < 0)
-                               {
-                                       pi2AllPositive = 0;
-                                       break;
-                               }
-                       }
-                       kk++;
-               }
-
-               //sum(pi^gamma * b)
-               Real piPowGammaDotB = 0.;
-               for (int v=0; v<k; v++)
-                       piPowGammaDotB += pow(pi[v],gamma) * b[v];
-               //sum(pi2^gamma * b)
-               Real pi2PowGammaDotB = 0.;
-               for (int v=0; v<k; v++)
-                       pi2PowGammaDotB += pow(pi2[v],gamma) * b[v];
-               //sum(gam2 * log(pi2))
-               Real gam2DotLogPi2 = 0.;
-               for (int v=0; v<k; v++)
-                       gam2DotLogPi2 += gam2[v] * log(pi2[v]);
-
-               //t(m) la plus grande valeur dans la grille O.1^k tel que ce soit décroissante ou constante
-               while (-invN*a + lambda*piPowGammaDotB < -invN*gam2DotLogPi2 + lambda*pi2PowGammaDotB
-                       && kk<1000)
-               {
-                       Real pow_01_kk = pow(0.1,kk);
-                       //pi2 = pi + 0.1^kk * (1/n*gam2 - pi)
-                       for (int v=0; v<k; v++)
-                               pi2[v] = pi[v] + pow_01_kk * (invN*gam2[v] - pi[v]);
-                       //pi2 was updated, so we recompute pi2PowGammaDotB and gam2DotLogPi2
-                       pi2PowGammaDotB = 0.;
-                       for (int v=0; v<k; v++)
-                               pi2PowGammaDotB += pow(pi2[v],gamma) * b[v];
-                       gam2DotLogPi2 = 0.;
-                       for (int v=0; v<k; v++)
-                               gam2DotLogPi2 += gam2[v] * log(pi2[v]);
-                       kk++;
-               }
-               Real t = pow(0.1,kk);
-               //sum(pi + t*(pi2-pi))
-               Real sumPiPlusTbyDiff = 0.;
-               for (int v=0; v<k; v++)
-                       sumPiPlusTbyDiff += (pi[v] + t*(pi2[v] - pi[v]));
-               //pi = (pi + t*(pi2-pi)) / sum(pi + t*(pi2-pi))
-               for (int v=0; v<k; v++)
-                       pi[v] = (pi[v] + t*(pi2[v] - pi[v])) / sumPiPlusTbyDiff;
-
-               //Pour phi et rho
-               for (int r=0; r<k; r++)
-               {
-                       for (int mm=0; mm<m; mm++)
-                       {
-                               Real ps = 0.,
-                                       nY2 = 0.;
-                               // Compute ps, and nY2 = sum(Y2[,mm,r]^2)
-                               for (int i=0; i<n; i++)
-                               {
-                                       //< X2[i,,r] , phi[,mm,r] >
-                                       Real dotProduct = 0.;
-                                       for (int u=0; u<p; u++)
-                                               dotProduct += X2[ai(i,u,r,n,p,k)] * phi[ai(u,mm,r,p,m,k)];
-                                       //ps = ps + Y2[i,mm,r] * sum(X2[i,,r] * phi[,mm,r])
-                                       ps += Y2[ai(i,mm,r,n,m,k)] * dotProduct;
-                                       nY2 += Y2[ai(i,mm,r,n,m,k)] * Y2[ai(i,mm,r,n,m,k)];
-                               }
-                               //rho[mm,mm,r] = (ps+sqrt(ps^2+4*nY2*gam2[r])) / (2*nY2)
-                               rho[ai(mm,mm,r,m,m,k)] = (ps + sqrt(ps*ps + 4*nY2 * gam2[r])) / (2*nY2);
-                       }
-               }
-
-               for (int r=0; r<k; r++)
-               {
-                       for (int j=0; j<p; j++)
-                       {
-                               for (int mm=0; mm<m; mm++)
-                               {
-                                       //sum(phi[-j,mm,r] * Gram2[j,-j,r])
-                                       Real phiDotGram2 = 0.;
-                                       for (int u=0; u<p; u++)
-                                       {
-                                               if (u != j)
-                                                       phiDotGram2 += phi[ai(u,mm,r,p,m,k)] * Gram2[ai(j,u,r,p,p,k)];
-                                       }
-                                       //S[j,mm,r] = -rho[mm,mm,r]*ps2[j,mm,r] + sum(phi[-j,mm,r] * Gram2[j,-j,r])
-                                       S[ai(j,mm,r,p,m,k)] = -rho[ai(mm,mm,r,m,m,k)] * ps2[ai(j,mm,r,p,m,k)]
-                                               + phiDotGram2;
-                                       Real pirPowGamma = pow(pi[r],gamma);
-                                       if (fabs(S[ai(j,mm,r,p,m,k)]) <= n*lambda*pirPowGamma)
-                                               phi[ai(j,mm,r,p,m,k)] = 0.;
-                                       else if (S[ai(j,mm,r,p,m,k)] > n*lambda*pirPowGamma)
-                                       {
-                                               phi[ai(j,mm,r,p,m,k)] = (n*lambda*pirPowGamma - S[ai(j,mm,r,p,m,k)])
-                                                       / Gram2[ai(j,j,r,p,p,k)];
-                                       }
-                                       else
-                                       {
-                                               phi[ai(j,mm,r,p,m,k)] = -(n*lambda*pirPowGamma + S[ai(j,mm,r,p,m,k)])
-                                                       / Gram2[ai(j,j,r,p,p,k)];
-                                       }
-                               }
-                       }
-               }
-
-               /////////////
-               // Etape E //
-               /////////////
-
-               // Precompute det(rho[,,r]) for r in 1...k
-               int signum;
-               for (int r=0; r<k; r++)
-               {
-                       for (int u=0; u<m; u++)
-                       {
-                               for (int v=0; v<m; v++)
-                                       matrix->data[u*m+v] = rho[ai(u,v,r,m,m,k)];
-                       }
-                       gsl_linalg_LU_decomp(matrix, permutation, &signum);
-                       detRho[r] = gsl_linalg_LU_det(matrix, signum);
-               }
-
-               Real sumLogLLH = 0.;
-               for (int i=0; i<n; i++)
-               {
-                       for (int r=0; r<k; r++)
-                       {
-                               //compute Y[i,]%*%rho[,,r]
-                               for (int u=0; u<m; u++)
-                               {
-                                       YiRhoR[u] = 0.;
-                                       for (int v=0; v<m; v++)
-                                               YiRhoR[u] += Y[mi(i,v,n,m)] * rho[ai(v,u,r,m,m,k)];
-                               }
-
-                               //compute X[i,]%*%phi[,,r]
-                               for (int u=0; u<m; u++)
-                               {
-                                       XiPhiR[u] = 0.;
-                                       for (int v=0; v<p; v++)
-                                               XiPhiR[u] += X[mi(i,v,n,p)] * phi[ai(v,u,r,p,m,k)];
-                               }
-
-                               //compute sq norm || Y(:,i)*rho(:,:,r)-X(i,:)*phi(:,:,r) ||_2^2
-                               sqNorm2[r] = 0.;
-                               for (int u=0; u<m; u++)
-                                       sqNorm2[r] += (YiRhoR[u]-XiPhiR[u]) * (YiRhoR[u]-XiPhiR[u]);
-                       }
-
-                       Real sumGamI = 0.;
-                       for (int r=0; r<k; r++)
-                       {
-                               gam[mi(i,r,n,k)] = pi[r] * exp(-.5*sqNorm2[r]) * detRho[r];
-                               sumGamI += gam[mi(i,r,n,k)];
-                       }
-
-                       sumLogLLH += log(sumGamI) - log(gaussConstM);
-                       if (sumGamI > EPS) //else: gam[i,] is already ~=0
-                       {
-                               for (int r=0; r<k; r++)
-                                       gam[mi(i,r,n,k)] /= sumGamI;
-                       }
-               }
-
-               //sumPen = sum(pi^gamma * b)
-               Real sumPen = 0.;
-               for (int r=0; r<k; r++)
-                       sumPen += pow(pi[r],gamma) * b[r];
-               Real last_llh = *llh;
-               //llh = -sumLogLLH/n + lambda*sumPen
-               *llh = -invN * sumLogLLH + lambda * sumPen;
-               Real dist = ite==1 ? *llh : (*llh - last_llh) / (1. + fabs(*llh));
-
-               //Dist1 = max( abs(phi-Phi) / (1+abs(phi)) )
-               Real Dist1 = 0.;
-               for (int u=0; u<p; u++)
-               {
-                       for (int v=0; v<m; v++)
-                       {
-                               for (int w=0; w<k; w++)
-                               {
-                                       Real tmpDist = fabs(phi[ai(u,v,w,p,m,k)]-Phi[ai(u,v,w,p,m,k)])
-                                               / (1.+fabs(phi[ai(u,v,w,p,m,k)]));
-                                       if (tmpDist > Dist1)
-                                               Dist1 = tmpDist;
-                               }
-                       }
-               }
-               //Dist2 = max( (abs(rho-Rho)) / (1+abs(rho)) )
-               Real Dist2 = 0.;
-               for (int u=0; u<m; u++)
-               {
-                       for (int v=0; v<m; v++)
-                       {
-                               for (int w=0; w<k; w++)
-                               {
-                                       Real tmpDist = fabs(rho[ai(u,v,w,m,m,k)]-Rho[ai(u,v,w,m,m,k)])
-                                               / (1.+fabs(rho[ai(u,v,w,m,m,k)]));
-                                       if (tmpDist > Dist2)
-                                               Dist2 = tmpDist;
-                               }
-                       }
-               }
-               //Dist3 = max( (abs(pi-Pi)) / (1+abs(Pi)))
-               Real Dist3 = 0.;
-               for (int u=0; u<n; u++)
-               {
-                       for (int v=0; v<k; v++)
-                       {
-                               Real tmpDist = fabs(pi[v]-Pi[v]) / (1.+fabs(pi[v]));
-                               if (tmpDist > Dist3)
-                                       Dist3 = tmpDist;
-                       }
-               }
-               //dist2=max([max(Dist1),max(Dist2),max(Dist3)]);
-               Real dist2 = Dist1;
-               if (Dist2 > dist2)
-                       dist2 = Dist2;
-               if (Dist3 > dist2)
-                       dist2 = Dist3;
-
-               if (ite >= mini && (dist >= tau || dist2 >= sqrt(tau)))
-                       break;
-       }
-
-       //affec = apply(gam, 1, which.max)
-       for (int i=0; i<n; i++)
-       {
-               Real rowMax = 0.;
-               affec[i] = 0;
-               for (int j=0; j<k; j++)
-               {
-                       if (gam[mi(i,j,n,k)] > rowMax)
-                       {
-                               affec[i] = j+1; //R indices start at 1
-                               rowMax = gam[mi(i,j,n,k)];
-                       }
-               }
-       }
-
-       //free memory
-       free(b);
-       free(gam);
-       free(Phi);
-       free(Rho);
-       free(Pi);
-       free(Gram2);
-       free(ps2);
-       free(detRho);
-       gsl_matrix_free(matrix);
-       gsl_permutation_free(permutation);
-       free(XiPhiR);
-       free(YiRhoR);
-       free(gam2);
-       free(pi2);
-       free(X2);
-       free(Y2);
-       free(sqNorm2);
-}