Fix numerical problems in EMGLLF (R version)
[valse.git] / pkg / R / EMGLLF.R
index e600032..6ee7ba7 100644 (file)
@@ -1 +1,189 @@
-#TODO: wrapper on C function
+#' EMGLLF 
+#'
+#' Description de EMGLLF
+#'
+#' @param phiInit an initialization for phi
+#' @param rhoInit an initialization for rho
+#' @param piInit an initialization for pi
+#' @param gamInit initialization for the a posteriori probabilities
+#' @param mini integer, minimum number of iterations in the EM algorithm, by default = 10
+#' @param maxi integer, maximum number of iterations in the EM algorithm, by default = 100
+#' @param gamma integer for the power in the penaly, by default = 1
+#' @param lambda regularization parameter in the Lasso estimation
+#' @param X matrix of covariates (of size n*p)
+#' @param Y matrix of responses (of size n*m)
+#' @param eps real, threshold to say the EM algorithm converges, by default = 1e-4
+#'
+#' @return A list ... phi,rho,pi,LLF,S,affec:
+#'   phi : parametre de moyenne renormalisé, calculé par l'EM
+#'   rho : parametre de variance renormalisé, calculé par l'EM
+#'   pi : parametre des proportions renormalisé, calculé par l'EM
+#'   LLF : log vraisemblance associée à cet échantillon, pour les valeurs estimées des paramètres
+#'   S : ... affec : ...
+#'
+#' @export
+EMGLLF <- function(phiInit, rhoInit, piInit, gamInit, mini, maxi, gamma, lambda, 
+  X, Y, eps, fast)
+{
+  if (!fast)
+  {
+    # Function in R
+    return(.EMGLLF_R(phiInit, rhoInit, piInit, gamInit, mini, maxi, gamma, lambda, 
+      X, Y, eps))
+  }
+
+  # Function in C
+  n <- nrow(X)  #nombre d'echantillons
+  p <- ncol(X)  #nombre de covariables
+  m <- ncol(Y)  #taille de Y (multivarié)
+  k <- length(piInit)  #nombre de composantes dans le mélange
+  .Call("EMGLLF", phiInit, rhoInit, piInit, gamInit, mini, maxi, gamma, lambda, 
+    X, Y, eps, phi = double(p * m * k), rho = double(m * m * k), pi = double(k), 
+    LLF = double(maxi), S = double(p * m * k), affec = integer(n), n, p, m, k, 
+    PACKAGE = "valse")
+}
+
+# R version - slow but easy to read
+.EMGLLF_R <- function(phiInit, rhoInit, piInit, gamInit, mini, maxi, gamma, lambda, 
+  X, Y, eps)
+{
+  # Matrix dimensions: NOTE: phiInit *must* be an array (even if p==1)
+  n <- dim(Y)[1]
+  p <- dim(phiInit)[1]
+  m <- dim(phiInit)[2]
+  k <- dim(phiInit)[3]
+
+  # Outputs
+  phi <- array(NA, dim = c(p, m, k))
+  phi[1:p, , ] <- phiInit
+  rho <- rhoInit
+  pi <- piInit
+  llh <- -Inf
+  S <- array(0, dim = c(p, m, k))
+
+  # Algorithm variables
+  gam <- gamInit
+  Gram2 <- array(0, dim = c(p, p, k))
+  ps2 <- array(0, dim = c(p, m, k))
+  X2 <- array(0, dim = c(n, p, k))
+  Y2 <- array(0, dim = c(n, m, k))
+  EPS <- 1e-15
+
+  for (ite in 1:maxi)
+  {
+    # Remember last pi,rho,phi values for exit condition in the end of loop
+    Phi <- phi
+    Rho <- rho
+    Pi <- pi
+
+    # Computations associated to X and Y
+    for (r in 1:k)
+    {
+      for (mm in 1:m)
+        Y2[, mm, r] <- sqrt(gam[, r]) * Y[, mm]
+      for (i in 1:n)
+        X2[i, , r] <- sqrt(gam[i, r]) * X[i, ]
+      for (mm in 1:m)
+        ps2[, mm, r] <- crossprod(X2[, , r], Y2[, mm, r])
+      for (j in 1:p)
+      {
+        for (s in 1:p)
+          Gram2[j, s, r] <- crossprod(X2[, j, r], X2[, s, r])
+      }
+    }
+
+    ## M step
+
+    # For pi
+    b <- sapply(1:k, function(r) sum(abs(phi[, , r])))
+    gam2 <- colSums(gam)
+    a <- sum(gam %*% log(pi))
+
+    # While the proportions are nonpositive
+    kk <- 0
+    pi2AllPositive <- FALSE
+    while (!pi2AllPositive)
+    {
+      pi2 <- pi + 0.1^kk * ((1/n) * gam2 - pi)
+      pi2AllPositive <- all(pi2 >= 0)
+      kk <- kk + 1
+    }
+
+    # t(m) is the largest value in the grid O.1^k such that it is nonincreasing
+    while (kk < 1000 && -a/n + lambda * sum(pi^gamma * b) <
+      # na.rm=TRUE to handle 0*log(0)
+      -sum(gam2 * log(pi2), na.rm=TRUE)/n + lambda * sum(pi2^gamma * b))
+    {
+      pi2 <- pi + 0.1^kk * (1/n * gam2 - pi)
+      kk <- kk + 1
+    }
+    t <- 0.1^kk
+    pi <- (pi + t * (pi2 - pi))/sum(pi + t * (pi2 - pi))
+
+    # For phi and rho
+    for (r in 1:k)
+    {
+      for (mm in 1:m)
+      {
+        ps <- 0
+        for (i in 1:n)
+          ps <- ps + Y2[i, mm, r] * sum(X2[i, , r] * phi[, mm, r])
+        nY2 <- sum(Y2[, mm, r]^2)
+        rho[mm, mm, r] <- (ps + sqrt(ps^2 + 4 * nY2 * gam2[r]))/(2 * nY2)
+      }
+    }
+
+    for (r in 1:k)
+    {
+      for (j in 1:p)
+      {
+        for (mm in 1:m)
+        {
+          S[j, mm, r] <- -rho[mm, mm, r] * ps2[j, mm, r] +
+            sum(phi[-j, mm, r] * Gram2[j, -j, r])
+          if (abs(S[j, mm, r]) <= n * lambda * (pi[r]^gamma)) {
+            phi[j, mm, r] <- 0
+          } else if (S[j, mm, r] > n * lambda * (pi[r]^gamma)) {
+            phi[j, mm, r] <- (n * lambda * (pi[r]^gamma) - S[j, mm, r])/Gram2[j, j, r]
+          } else {
+            phi[j, mm, r] <- -(n * lambda * (pi[r]^gamma) + S[j, mm, r])/Gram2[j, j, r]
+          }
+        }
+      }
+    }
+
+    ## E step
+
+    # Precompute det(rho[,,r]) for r in 1...k
+    detRho <- sapply(1:k, function(r) det(rho[, , r]))
+    sumLogLLH <- 0
+    for (i in 1:n)
+    {
+      # Update gam[,]; use log to avoid numerical problems
+      logGam <- sapply(1:k, function(r) {
+        log(pi[r]) + log(detRho[r]) - 0.5 *
+          sum((Y[i, ] %*% rho[, , r] - X[i, ] %*% phi[, , r])^2)
+      })
+
+      logGam <- logGam - max(logGam) #adjust without changing proportions
+      gam[i, ] <- exp(logGam)
+      norm_fact <- sum(gam[i, ])
+      gam[i, ] <- gam[i, ] / norm_fact
+      sumLogLLH <- sumLogLLH + log(norm_fact) - log((2 * base::pi)^(m/2))
+    }
+
+    sumPen <- sum(pi^gamma * b)
+    last_llh <- llh
+    llh <- -sumLogLLH/n + lambda * sumPen
+    dist <- ifelse(ite == 1, llh, (llh - last_llh)/(1 + abs(llh)))
+    Dist1 <- max((abs(phi - Phi))/(1 + abs(phi)))
+    Dist2 <- max((abs(rho - Rho))/(1 + abs(rho)))
+    Dist3 <- max((abs(pi - Pi))/(1 + abs(Pi)))
+    dist2 <- max(Dist1, Dist2, Dist3)
+
+    if (ite >= mini && (dist >= eps || dist2 >= sqrt(eps)))
+      break
+  }
+
+  list(phi = phi, rho = rho, pi = pi, llh = llh, S = S)
+}