#' Plot #' #' It is a function which plots relevant parameters #' #' @param X matrix of covariates (of size n*p) #' @param Y matrix of responses (of size n*m) #' @param model the model constructed by valse procedure #' @param n sample size #' @return several plots #' #' @examples TODO #' #' @export #' plot_valse <- function(X, Y, model, n, comp = FALSE, k1 = NA, k2 = NA) { require("gridExtra") require("ggplot2") require("reshape2") require("cowplot") K <- length(model$pi) ## regression matrices gReg <- list() for (r in 1:K) { Melt <- melt(t((model$phi[, , r]))) gReg[[r]] <- ggplot(data = Melt, aes(x = Var1, y = Var2, fill = value)) + geom_tile() + scale_fill_gradient2(low = "blue", high = "red", mid = "white", midpoint = 0, space = "Lab") + ggtitle(paste("Regression matrices in cluster", r)) } print(gReg) ## Differences between two clusters if (comp) { if (is.na(k1) || is.na(k)) print("k1 and k2 must be integers, representing the clusters you want to compare") Melt <- melt(t(model$phi[, , k1] - model$phi[, , k2])) gDiff <- ggplot(data = Melt, aes(x = Var1, y = Var2, fill = value)) + geom_tile() + scale_fill_gradient2(low = "blue", high = "red", mid = "white", midpoint = 0, space = "Lab") + ggtitle(paste("Difference between regression matrices in cluster", k1, "and", k2)) print(gDiff) } ### Covariance matrices matCov <- matrix(NA, nrow = dim(model$rho[, , 1])[1], ncol = K) for (r in 1:K) matCov[, r] <- diag(model$rho[, , r]) MeltCov <- melt(matCov) gCov <- ggplot(data = MeltCov, aes(x = Var1, y = Var2, fill = value)) + geom_tile() + scale_fill_gradient2(low = "blue", high = "red", mid = "white", midpoint = 0, space = "Lab") + ggtitle("Covariance matrices") print(gCov) ### Proportions gam2 <- matrix(NA, ncol = K, nrow = n) for (i in 1:n) gam2[i, ] <- c(model$proba[i, model$affec[i]], model$affec[i]) bp <- ggplot(data.frame(gam2), aes(x = X2, y = X1, color = X2, group = X2)) + geom_boxplot() + theme(legend.position = "none") + background_grid(major = "xy", minor = "none") print(bp) ### Mean in each cluster XY <- cbind(X, Y) XY_class <- list() meanPerClass <- matrix(0, ncol = K, nrow = dim(XY)[2]) for (r in 1:K) { XY_class[[r]] <- XY[model$affec == r, ] if (sum(model$affec == r) == 1) { meanPerClass[, r] <- XY_class[[r]] } else { meanPerClass[, r] <- apply(XY_class[[r]], 2, mean) } } data <- data.frame(mean = as.vector(meanPerClass), cluster = as.character(rep(1:K, each = dim(XY)[2])), time = rep(1:dim(XY)[2], K)) g <- ggplot(data, aes(x = time, y = mean, group = cluster, color = cluster)) print(g + geom_line(aes(linetype = cluster, color = cluster)) + geom_point(aes(color = cluster)) + ggtitle("Mean per cluster")) }