#' Plot #' #' It is a function which plots relevant parameters #' #' @param X matrix of covariates (of size n*p) #' @param Y matrix of responses (of size n*m) #' @param model the model constructed by valse procedure #' @param n sample size #' @return several plots #' #' @examples TODO #' #' @export #' plot_valse = function(X,Y,model,n, comp = FALSE, k1 = NA, k2 = NA){ require("gridExtra") require("ggplot2") require("reshape2") require("cowplot") K = length(model$pi) ## regression matrices gReg = list() for (r in 1:K){ Melt = melt(t((model$phi[,,r]))) gReg[[r]] = ggplot(data = Melt, aes(x=Var1, y=Var2, fill=value)) + geom_tile() + scale_fill_gradient2(low = "blue", high = "red", mid = "white", midpoint = 0, space = "Lab") + ggtitle(paste("Regression matrices in cluster",r)) } print(gReg) ## Differences between two clusters if (comp){ if (is.na(k1) || is.na(k)){print('k1 and k2 must be integers, representing the clusters you want to compare')} Melt = melt(t(model$phi[,,k1]-model$phi[,,k2])) gDiff = ggplot(data = Melt, aes(x=Var1, y=Var2, fill=value)) + geom_tile() + scale_fill_gradient2(low = "blue", high = "red", mid = "white", midpoint = 0, space = "Lab") + ggtitle(paste("Difference between regression matrices in cluster",k1, "and", k2)) print(gDiff) } ### Covariance matrices matCov = matrix(NA, nrow = dim(model$rho[,,1])[1], ncol = K) for (r in 1:K){ matCov[,r] = diag(model$rho[,,r]) } MeltCov = melt(matCov) gCov = ggplot(data =MeltCov, aes(x=Var1, y=Var2, fill=value)) + geom_tile() + scale_fill_gradient2(low = "blue", high = "red", mid = "white", midpoint = 0, space = "Lab") + ggtitle("Covariance matrices") print(gCov ) ### Proportions gam2 = matrix(NA, ncol = K, nrow = n) for (i in 1:n){ gam2[i, ] = c(model$proba[i, model$affec[i]], model$affec[i]) } bp <- ggplot(data.frame(gam2), aes(x=X2, y=X1, color=X2, group = X2)) + geom_boxplot() + theme(legend.position = "none")+ background_grid(major = "xy", minor = "none") print(bp) ### Mean in each cluster XY = cbind(X,Y) XY_class= list() meanPerClass= matrix(0, ncol = K, nrow = dim(XY)[2]) for (r in 1:K){ XY_class[[r]] = XY[model$affec == r, ] if (sum(model$affec==r) == 1){ meanPerClass[,r] = XY_class[[r]] } else { meanPerClass[,r] = apply(XY_class[[r]], 2, mean) } } data = data.frame(mean = as.vector(meanPerClass), cluster = as.character(rep(1:K, each = dim(XY)[2])), time = rep(1:dim(XY)[2],K)) g = ggplot(data, aes(x=time, y = mean, group = cluster, color = cluster)) print(g + geom_line(aes(linetype=cluster, color=cluster))+ geom_point(aes(color=cluster)) + ggtitle('Mean per cluster')) }