#' Plot #' #' It is a function which plots relevant parameters #' #' #' @return several plots #' #' @examples TODO #' #' @export #' plot_valse = function(){ require("gridExtra") require("ggplot2") require("reshape2") ## regression matrices gReg = list() for (r in 1:K){ Melt = melt(t((model$phi[,,r]))) gReg[[r]] = ggplot(data = Melt, aes(x=Var1, y=Var2, fill=value)) + geom_tile() + scale_fill_gradient2(low = "blue", high = "red", mid = "white", midpoint = 0, space = "Lab") + ggtitle(paste("Regression matrices in cluster",r)) } print(gReg) ## Differences between two clusters k1 = 1 k2 = 2 Melt = melt(t(model$phi[,,k1]-model$phi[,,k2])) gDiff = ggplot(data = Melt, aes(x=Var1, y=Var2, fill=value)) + geom_tile() + scale_fill_gradient2(low = "blue", high = "red", mid = "white", midpoint = 0, space = "Lab") + ggtitle(paste("Difference between regression matrices in cluster",k1, "and", k2)) print(gDiff) ### Covariance matrices matCov = matrix(NA, nrow = dim(model$rho[,,1])[1], ncol = K) for (r in 1:K){ matCov[,r] = diag(model$rho[,,r]) } MeltCov = melt(matCov) gCov = ggplot(data =MeltCov, aes(x=Var1, y=Var2, fill=value)) + geom_tile() + scale_fill_gradient2(low = "blue", high = "red", mid = "white", midpoint = 0, space = "Lab") + ggtitle("Covariance matrices") print(gCov ) ### proportions Gam = matrix(0, ncol = K, nrow = n) gam = Gam for (i in 1:n){ for (r in 1:K){ sqNorm2 = sum( (Y[i,]%*%model$rho[,,r]-X[i,]%*%model$phi[,,r])^2 ) Gam[i,r] = model$pi[r] * exp(-0.5*sqNorm2)* det(model$rho[,,r]) } gam[i,] = Gam[i,] / sum(Gam[i,]) } affec = apply(gam, 1,which.max) gam2 = matrix(NA, ncol = K, nrow = n) for (i in 1:n){ gam2[i, ] = c(gam[i, affec[i]], affec[i]) } bp <- ggplot(data.frame(gam2), aes(x=X2, y=X1, color=X2, group = X2)) + geom_boxplot() + theme(legend.position = "none") print(bp + background_grid(major = "xy", minor = "none")) ### Mean in each cluster XY = cbind(X,Y) XY_class= list() meanPerClass= matrix(0, ncol = K, nrow = dim(XY)[2]) for (r in 1:K){ XY_class[[r]] = XY[affec == r, ] meanPerClass[,r] = apply(XY_class[[r]], 2, mean) } data = data.frame(mean = as.vector(meanPerClass), cluster = as.character(rep(1:K, each = dim(XY)[2])), time = rep(1:dim(XY)[2],K)) g = ggplot(data, aes(x=time, y = mean, group = cluster, color = cluster)) print(g + geom_line(aes(linetype=cluster, color=cluster))+ geom_point(aes(color=cluster)) + ggtitle('Mean per cluster')) }