started to look at EMGLLF.c
[valse.git] / pkg / R / EMGLLF.R
1 #' EMGLLF
2 #'
3 #' Description de EMGLLF
4 #'
5 #' @param phiInit an initialization for phi
6 #' @param rhoInit an initialization for rho
7 #' @param piInit an initialization for pi
8 #' @param gamInit initialization for the a posteriori probabilities
9 #' @param mini integer, minimum number of iterations in the EM algorithm, by default = 10
10 #' @param maxi integer, maximum number of iterations in the EM algorithm, by default = 100
11 #' @param gamma integer for the power in the penaly, by default = 1
12 #' @param lambda regularization parameter in the Lasso estimation
13 #' @param X matrix of covariates (of size n*p)
14 #' @param Y matrix of responses (of size n*m)
15 #' @param eps real, threshold to say the EM algorithm converges, by default = 1e-4
16 #'
17 #' @return A list ... phi,rho,pi,LLF,S,affec:
18 #' phi : parametre de moyenne renormalisé, calculé par l'EM
19 #' rho : parametre de variance renormalisé, calculé par l'EM
20 #' pi : parametre des proportions renormalisé, calculé par l'EM
21 #' LLF : log vraisemblance associée à cet échantillon, pour les valeurs estimées des paramètres
22 #' S : ...
23 #' affec : ...
24 #'
25 #' @export
26 EMGLLF <- function(phiInit, rhoInit, piInit, gamInit, mini, maxi, gamma, lambda,
27 X, Y, eps, fast)
28 {
29 if (!fast)
30 {
31 # Function in R
32 return(.EMGLLF_R(phiInit, rhoInit, piInit, gamInit, mini, maxi, gamma, lambda,
33 X, Y, eps))
34 }
35
36 # Function in C
37 n <- nrow(X) #nombre d'echantillons
38 p <- ncol(X) #nombre de covariables
39 m <- ncol(Y) #taille de Y (multivarié)
40 k <- length(piInit) #nombre de composantes dans le mélange
41 .Call("EMGLLF", phiInit, rhoInit, piInit, gamInit, mini, maxi, gamma, lambda,
42 X, Y, eps, phi = double(p * m * k), rho = double(m * m * k), pi = double(k),
43 LLF = double(maxi), S = double(p * m * k), affec = integer(n), n, p, m, k,
44 PACKAGE = "valse")
45 list(phi = phi, rho = rho, pi = pi, llh = llh, S = S, affec=affec)
46 }
47
48 # R version - slow but easy to read
49 .EMGLLF_R <- function(phiInit, rhoInit, piInit, gamInit, mini, maxi, gamma, lambda,
50 X, Y, eps)
51 {
52 # Matrix dimensions
53 n <- nrow(X)
54 p <- ncol(X)
55 m <- ncol(Y)
56 k <- length(piInit)
57
58 # Adjustments required when p==1 or m==1 (var.sel. or output dim 1)
59 if (p==1 || m==1)
60 phiInit <- array(phiInit, dim=c(p,m,k))
61 if (m==1)
62 rhoInit <- array(rhoInit, dim=c(m,m,k))
63
64 # Outputs
65 phi <- phiInit
66 rho <- rhoInit
67 pi <- piInit
68 llh <- -Inf
69 S <- array(0, dim = c(p, m, k))
70
71 # Algorithm variables
72 gam <- gamInit
73 Gram2 <- array(0, dim = c(p, p, k))
74 ps2 <- array(0, dim = c(p, m, k))
75 X2 <- array(0, dim = c(n, p, k))
76 Y2 <- array(0, dim = c(n, m, k))
77 EPS <- 1e-15
78
79 for (ite in 1:maxi)
80 {
81 # Remember last pi,rho,phi values for exit condition in the end of loop
82 Phi <- phi
83 Rho <- rho
84 Pi <- pi
85
86 # Computations associated to X and Y
87 for (r in 1:k)
88 {
89 for (mm in 1:m)
90 Y2[, mm, r] <- sqrt(gam[, r]) * Y[, mm]
91 for (i in 1:n)
92 X2[i, , r] <- sqrt(gam[i, r]) * X[i, ]
93 for (mm in 1:m)
94 ps2[, mm, r] <- crossprod(X2[, , r], Y2[, mm, r])
95 for (j in 1:p)
96 {
97 for (s in 1:p)
98 Gram2[j, s, r] <- crossprod(X2[, j, r], X2[, s, r])
99 }
100 }
101
102 ## M step
103
104 # For pi
105 b <- sapply(1:k, function(r) sum(abs(phi[, , r])))
106 gam2 <- colSums(gam)
107 a <- sum(gam %*% log(pi))
108
109 # While the proportions are nonpositive
110 kk <- 0
111 pi2AllPositive <- FALSE
112 while (!pi2AllPositive)
113 {
114 pi2 <- pi + 0.1^kk * ((1/n) * gam2 - pi)
115 pi2AllPositive <- all(pi2 >= 0)
116 kk <- kk + 1
117 }
118
119 # t(m) is the largest value in the grid O.1^k such that it is nonincreasing
120 while (kk < 1000 && -a/n + lambda * sum(pi^gamma * b) <
121 # na.rm=TRUE to handle 0*log(0)
122 -sum(gam2 * log(pi2), na.rm=TRUE)/n + lambda * sum(pi2^gamma * b))
123 {
124 pi2 <- pi + 0.1^kk * (1/n * gam2 - pi)
125 kk <- kk + 1
126 }
127 t <- 0.1^kk
128 pi <- (pi + t * (pi2 - pi))/sum(pi + t * (pi2 - pi))
129
130 # For phi and rho
131 for (r in 1:k)
132 {
133 for (mm in 1:m)
134 {
135 ps <- 0
136 for (i in 1:n)
137 ps <- ps + Y2[i, mm, r] * sum(X2[i, , r] * phi[, mm, r])
138 nY2 <- sum(Y2[, mm, r]^2)
139 rho[mm, mm, r] <- (ps + sqrt(ps^2 + 4 * nY2 * gam2[r]))/(2 * nY2)
140 }
141 }
142
143 for (r in 1:k)
144 {
145 for (j in 1:p)
146 {
147 for (mm in 1:m)
148 {
149 S[j, mm, r] <- -rho[mm, mm, r] * ps2[j, mm, r] +
150 sum(phi[-j, mm, r] * Gram2[j, -j, r])
151 if (abs(S[j, mm, r]) <= n * lambda * (pi[r]^gamma)) {
152 phi[j, mm, r] <- 0
153 } else if (S[j, mm, r] > n * lambda * (pi[r]^gamma)) {
154 phi[j, mm, r] <- (n * lambda * (pi[r]^gamma) - S[j, mm, r])/Gram2[j, j, r]
155 } else {
156 phi[j, mm, r] <- -(n * lambda * (pi[r]^gamma) + S[j, mm, r])/Gram2[j, j, r]
157 }
158 }
159 }
160 }
161
162 ## E step
163
164 # Precompute det(rho[,,r]) for r in 1...k
165 detRho <- sapply(1:k, function(r) gdet(rho[, , r]))
166 sumLogLLH <- 0
167 for (i in 1:n)
168 {
169 # Update gam[,]; use log to avoid numerical problems
170 logGam <- sapply(1:k, function(r) {
171 log(pi[r]) + log(detRho[r]) - 0.5 *
172 sum((Y[i, ] %*% rho[, , r] - X[i, ] %*% phi[, , r])^2)
173 })
174
175 logGam <- logGam - max(logGam) #adjust without changing proportions
176 gam[i, ] <- exp(logGam)
177 norm_fact <- sum(gam[i, ])
178 gam[i, ] <- gam[i, ] / norm_fact
179 sumLogLLH <- sumLogLLH + log(norm_fact) - log((2 * base::pi)^(m/2))
180 }
181
182 sumPen <- sum(pi^gamma * b)
183 last_llh <- llh
184 llh <- -sumLogLLH/n #+ lambda * sumPen
185 dist <- ifelse(ite == 1, llh, (llh - last_llh)/(1 + abs(llh)))
186 Dist1 <- max((abs(phi - Phi))/(1 + abs(phi)))
187 Dist2 <- max((abs(rho - Rho))/(1 + abs(rho)))
188 Dist3 <- max((abs(pi - Pi))/(1 + abs(Pi)))
189 dist2 <- max(Dist1, Dist2, Dist3)
190
191 if (ite >= mini && (dist >= eps || dist2 >= sqrt(eps)))
192 break
193 }
194
195 affec = apply(gam, 1, which.max)
196 list(phi = phi, rho = rho, pi = pi, llh = llh, S = S, affec=affec)
197 }