X-Git-Url: https://git.auder.net/?p=talweg.git;a=blobdiff_plain;f=reports%2FExperiments.gj;fp=reports%2FExperiments.gj;h=d7ade4006c12b9b31f87548263911468a16ce920;hp=0f102ad7afbbc87872e14718d51d95200b576b55;hb=1e8327df4e8abce5c23808be4f98037635bb2714;hpb=d2ab47a744d8fb29c03a76a7ca2368dae53f9a57 diff --git a/reports/Experiments.gj b/reports/Experiments.gj index 0f102ad..d7ade40 100644 --- a/reports/Experiments.gj +++ b/reports/Experiments.gj @@ -2,8 +2,8 @@ # Résultats numériques Cette partie montre les résultats obtenus avec des variantes de l'algorithme décrit au -chapitre , en utilisant le package présenté à la section 3. Cet algorithme est -systématiquement comparé à deux approches naïves : +à la section 4, en utilisant le package présenté au chapitre précédent. Cet +algorithme est systématiquement comparé à deux approches naïves : * la moyenne des lendemains des jours "similaires" dans tout le passé, c'est-à-dire prédiction = moyenne de tous les mardis passés si le jour courant est un lundi. @@ -35,8 +35,8 @@ list_indices = ['indices_ch', 'indices_ep', 'indices_np'] -----r library(talweg) -P = ${P} #instant de prévision -H = ${H} #horizon (en heures) +P = ${P} #première heure de prévision +H = ${H} #dernière heure de prévision ts_data = read.csv(system.file("extdata","pm10_mesures_H_loc_report.csv", package="talweg")) @@ -44,8 +44,7 @@ exo_data = read.csv(system.file("extdata","meteo_extra_noNAs.csv", package="talweg")) # NOTE: 'GMT' because DST gaps are filled and multiple values merged in # above dataset. Prediction from P+1 to P+H included. -data = getData(ts_data, exo_data, input_tz = "GMT", working_tz="GMT", - predict_at=P) +data = getData(ts_data, exo_data) indices_ch = seq(as.Date("2015-01-18"),as.Date("2015-01-24"),"days") indices_ep = seq(as.Date("2015-03-15"),as.Date("2015-03-21"),"days") @@ -55,21 +54,22 @@ indices_np = seq(as.Date("2015-04-26"),as.Date("2015-05-02"),"days") ##

${list_titles[i]}

${"##"} ${list_titles[i]} -----r -p1 = computeForecast(data, ${list_indices[i]}, "Neighbors", "Neighbors", horizon=H, - simtype="mix", local=FALSE) -p2 = computeForecast(data, ${list_indices[i]}, "Neighbors", "Neighbors", horizon=H, - simtype="endo", local=TRUE) -p3 = computeForecast(data, ${list_indices[i]}, "Neighbors", "Zero", horizon=H, - simtype="none", local=TRUE) -p4 = computeForecast(data, ${list_indices[i]}, "Average", "Zero", horizon=H) -p5 = computeForecast(data, ${list_indices[i]}, "Persistence", "Zero", horizon=H, - same_day=${'TRUE' if loop.index < 2 else 'FALSE'}) +p1 = computeForecast(data, ${list_indices[i]}, "Neighbors", "Neighbors", predict_from=P, + horizon=H, simtype="mix", local=FALSE) +p2 = computeForecast(data, ${list_indices[i]}, "Neighbors", "Neighbors", predict_from=P, + horizon=H, simtype="endo", local=TRUE) +p3 = computeForecast(data, ${list_indices[i]}, "Neighbors", "Zero", predict_from=P, + horizon=H, simtype="none", local=TRUE) +p4 = computeForecast(data, ${list_indices[i]}, "Average", "Zero", predict_from=P, + horizon=H) +p5 = computeForecast(data, ${list_indices[i]}, "Persistence", "Zero", predict_from=P, + horizon=H, same_day=${'TRUE' if loop.index < 2 else 'FALSE'}) -----r -e1 = computeError(data, p1, H) -e2 = computeError(data, p2, H) -e3 = computeError(data, p3, H) -e4 = computeError(data, p4, H) -e5 = computeError(data, p5, H) +e1 = computeError(data, p1, P, H) +e2 = computeError(data, p2, P, H) +e3 = computeError(data, p3, P, H) +e4 = computeError(data, p4, P, H) +e5 = computeError(data, p5, P, H) options(repr.plot.width=9, repr.plot.height=7) plotError(list(e1, e5, e4, e2, e3), cols=c(1,2,colors()[258],4,6)) @@ -134,14 +134,14 @@ journée sur la courbes "difficile à prévoir". % endif -----r par(mfrow=c(1,2)) -f_np1 = computeFilaments(data, p1, i_np, plot=TRUE) +f_np1 = computeFilaments(data, p1, i_np, predict_from=P, plot=TRUE) title(paste("Filaments p1 day",i_np)) -f_p1 = computeFilaments(data, p1, i_p, plot=TRUE) +f_p1 = computeFilaments(data, p1, i_p, predict_from=P, plot=TRUE) title(paste("Filaments p1 day",i_p)) -f_np2 = computeFilaments(data, p2, i_np, plot=TRUE) +f_np2 = computeFilaments(data, p2, i_np, predict_from=P, plot=TRUE) title(paste("Filaments p2 day",i_np)) -f_p2 = computeFilaments(data, p2, i_p, plot=TRUE) +f_p2 = computeFilaments(data, p2, i_p, predict_from=P, plot=TRUE) title(paste("Filaments p2 day",i_p)) ----- % if i == 0: @@ -161,8 +161,8 @@ de variabilité relative. % endif -----r par(mfrow=c(1,2)) -plotFilamentsBox(data, f_np1); title(paste("FilBox p1 day",i_np)) -plotFilamentsBox(data, f_p1); title(paste("FilBox p1 day",i_p)) +plotFilamentsBox(data, f_np1, predict_from=P); title(paste("FilBox p1 day",i_np)) +plotFilamentsBox(data, f_p1, predict_from=P); title(paste("FilBox p1 day",i_p)) # En pointillés la courbe du jour courant + lendemain (à prédire) ----- @@ -185,11 +185,11 @@ lendemains de voisins atypiques, courbe à prévoir elle-même légèrement % endif -----r par(mfrow=c(1,2)) -plotRelVar(data, f_np1); title(paste("StdDev p1 day",i_np)) -plotRelVar(data, f_p1); title(paste("StdDev p1 day",i_p)) +plotRelVar(data, f_np1, predict_from=P); title(paste("StdDev p1 day",i_np)) +plotRelVar(data, f_p1, predict_from=P); title(paste("StdDev p1 day",i_p)) -plotRelVar(data, f_np2); title(paste("StdDev p2 day",i_np)) -plotRelVar(data, f_p2); title(paste("StdDev p2 day",i_p)) +plotRelVar(data, f_np2, predict_from=P); title(paste("StdDev p2 day",i_np)) +plotRelVar(data, f_p2, preidct_from=P); title(paste("StdDev p2 day",i_p)) # Variabilité globale en rouge ; sur les voisins (+ lendemains) en noir -----