X-Git-Url: https://git.auder.net/?p=talweg.git;a=blobdiff_plain;f=pkg%2FR%2Fplot.R;h=0f895bd16483795302623b53ea983f3ab9c2cd92;hp=c8f7792cb05be2c4215bd93da8fac016b0b6e1ed;hb=HEAD;hpb=af3b84f4cacade7d83221ca0249b546c50ddf340 diff --git a/pkg/R/plot.R b/pkg/R/plot.R index c8f7792..0f895bd 100644 --- a/pkg/R/plot.R +++ b/pkg/R/plot.R @@ -1,114 +1,102 @@ -#' plot curves +#' Plot curves #' -#' Plot a range of curves in data +#' Plot a range of curves in data. #' -#' @param data Object of class Data +#' @inheritParams computeError #' @param indices Range of indices (integers or dates) #' #' @export plotCurves <- function(data, indices=seq_len(data$getSize())) { - yrange = quantile( sapply( indices, function(i) { - serie = c(data$getCenteredSerie(i)) - if (!all(is.na(serie))) - range(serie, na.rm=TRUE) - c() - }), probs=c(0.05,0.95) ) + series = data$getSeries(indices) + yrange = quantile(series, probs=c(0.025,0.975), na.rm=TRUE) par(mar=c(4.7,5,1,1), cex.axis=1.5, cex.lab=1.5) - for (i in seq_along(indices)) - { - plot(data$getSerie(indices[i]), type="l", ylim=yrange, - xlab=ifelse(i==1,"Temps (en heures)",""), ylab=ifelse(i==1,"PM10","")) - if (i < length(indices)) - par(new=TRUE) - } + matplot(series, type="l", ylim=yrange, xlab="Time (hours)", ylab="PM10") } -#' plot measured / predicted +#' Plot error +#' +#' Draw error graphs, potentially from several runs of \code{computeForecast()}. #' -#' Plot measured curve (in black) and predicted curve (in red) +#' @param err Error as returned by \code{computeError()} +#' @param cols Colors for each error (default: 1,2,3,...) +#' @param agg Aggregation level ("day", "week" or "month") #' -#' @param data Object return by \code{getData} -#' @param pred Object as returned by \code{computeForecast} -#' @param index Index in forecasts +#' @seealso \code{\link{plotCurves}}, \code{\link{plotPredReal}}, +#' \code{\link{plotSimils}}, \code{\link{plotFbox}}, \code{\link{computeFilaments}}, +#' \code{\link{plotFilamentsBox}}, \code{\link{plotRelVar}} #' #' @export -plotPredReal <- function(data, pred, index) +plotError <- function(err, cols=seq_along(err), agg="day") { - horizon = length(pred$getSerie(1)) - measure = data$getSerie(pred$getIndexInData(index)+1)[1:horizon] - yrange = range( pred$getSerie(index), measure ) - par(mar=c(4.7,5,1,1), cex.axis=1.5, cex.lab=1.5, lwd=3) - plot(measure, type="l", ylim=yrange, xlab="Temps (en heures)", ylab="PM10") - par(new=TRUE) - plot(pred$getSerie(index), type="l", col="#0000FF", ylim=yrange, xlab="", ylab="") + if (!is.null(err$abs)) + err = list(err) + par(mfrow=c(2,2), mar=c(4.7,5,1,1), cex.axis=1.5, cex.lab=1.5) + L = length(err) + + yrange = range( sapply(1:L, function(i) err[[i]]$abs$day), na.rm=TRUE ) + matplot(sapply( seq_len(L), function(i) err[[i]]$abs$day ), type="l", + xlab="Time (hours)", ylab="Mean |y - y_hat|", ylim=yrange, col=cols, lwd=2, lty=1) + + agg_curves <- sapply( seq_len(L), function(i) { + curve <- err[[i]]$abs$indices + delta <- if (agg=="day") 1 else if (agg=="week") 7 else if (agg=="month") 30 + vapply( seq(1,length(curve),delta), function(i) { + mean(curve[i:(i+delta-1)], na.rm=TRUE) + }, vector("double",1), USE.NAMES=FALSE ) + }) + yrange = range(agg_curves, na.rm=TRUE) + matplot(agg_curves, type="l", xlab=paste("Time (",agg,"s)", sep=""), + ylab="Mean |y - y_hat|", ylim=yrange, col=cols, lwd=2, lty=1) + + yrange = range( sapply(1:L, function(i) err[[i]]$MAPE$day), na.rm=TRUE ) + matplot(sapply( seq_len(L), function(i) err[[i]]$MAPE$day ), type="l", + xlab="Time (hours)", ylab="Mean MAPE", ylim=yrange, col=cols, lwd=2, lty=1) + + agg_curves <- sapply( seq_len(L), function(i) { + curve <- err[[i]]$MAPE$indices + delta <- if (agg=="day") 1 else if (agg=="week") 7 else if (agg=="month") 30 + vapply( seq(1,length(curve),delta), function(i) { + mean(curve[i:(i+delta-1)], na.rm=TRUE) + }, vector("double",1), USE.NAMES=FALSE ) + }) + yrange = range(agg_curves, na.rm=TRUE) + matplot(agg_curves, type="l", xlab=paste("Time (",agg,"s)", sep=""), + ylab="Mean MAPE", ylim=yrange, col=cols, lwd=2, lty=1) } -#' Compute filaments +#' Plot measured / predicted #' -#' Get similar days in the past + "past tomorrow", as black as distances are small +#' Plot measured curve (in black) and predicted curve (in blue). #' -#' @param data Object as returned by \code{getData} -#' @param index Index in data -#' @param limit Number of neighbors to consider -#' @param plot Should the result be plotted? +#' @inheritParams computeError +#' @param index Index in forecasts (integer or date) #' #' @export -computeFilaments <- function(data, index, limit=60, plot=TRUE) +plotPredReal <- function(data, pred, index) { - index = dateIndexToInteger(index, data) - ref_serie = data$getCenteredSerie(index) - if (any(is.na(ref_serie))) - stop("computeFilaments requires a serie without NAs") - L = length(ref_serie) + prediction = pred$getForecast(index) + measure = data$getSerie( pred$getIndexInData(index) )[1:length(pred$getForecast(1))] - # Determine indices of no-NAs days followed by no-NAs tomorrows - fdays = c() - for (i in 1:(index-1)) - { - if ( !any(is.na(data$getSerie(i)) | is.na(data$getSerie(i+1))) ) - fdays = c(fdays, i) - } + # Remove the common part, where prediction == measure + dot_mark <- ifelse(prediction[1]==measure[1], + which.max(seq_along(prediction)[prediction==measure]), 0) + prediction = prediction[(dot_mark+1):length(prediction)] + measure = measure[(dot_mark+1):length(measure)] - distances = sapply(fdays, function(i) { - sqrt( sum( (ref_serie - data$getCenteredSerie(i))^2 ) / L ) - }) - indices = sort(distances, index.return=TRUE)$ix[1:min(limit,length(distances))] - yrange = quantile( c(ref_serie, sapply( indices, function(i) { - serie = c(data$getCenteredSerie(fdays[i]), data$getCenteredSerie(fdays[i]+1)) - if (!all(is.na(serie))) - return (range(serie, na.rm=TRUE)) - c() - }) ), probs=c(0.05,0.95) ) - grays = gray.colors(20, 0.1, 0.9) #TODO: 20 == magic number - min_dist = min(distances[indices]) - max_dist = max(distances[indices]) - color_values = floor( 19.5 * (distances[indices]-min_dist) / (max_dist-min_dist) ) + 1 - plot_order = sort(color_values, index.return=TRUE, decreasing=TRUE)$ix - colors = c(grays[ color_values[plot_order] ], "#FF0000") - if (plot) - { - par(mar=c(4.7,5,1,1), cex.axis=1.5, cex.lab=1.5, lwd=2) - for ( i in seq_len(length(indices)+1) ) - { - ii = ifelse(i<=length(indices), fdays[ indices[plot_order[i]] ], index) - plot(c(data$getCenteredSerie(ii),data$getCenteredSerie(ii+1)), - ylim=yrange, type="l", col=colors[i], - xlab=ifelse(i==1,"Temps (en heures)",""), ylab=ifelse(i==1,"PM10 centré","")) - if (i <= length(indices)) - par(new=TRUE) - } - abline(v=24, lty=2, col=colors()[56]) - } - list("indices"=c(fdays[ indices[plot_order] ],index), "colors"=colors) + yrange = range(measure, prediction) + par(mar=c(4.7,5,1,1), cex.axis=1.5, cex.lab=1.5, lwd=3) + plot(measure, type="l", ylim=yrange, xlab="Time (hours)", ylab="PM10") + par(new=TRUE) + plot(prediction, type="l", col="#0000FF", ylim=yrange, xlab="", ylab="") } #' Plot similarities #' -#' Plot histogram of similarities (weights) +#' Plot histogram of similarities (weights), for 'Neighbors' method. #' -#' @param pred Object as returned by \code{computeForecast} -#' @param index Index in forecasts (not in data) +#' @inheritParams computeError +#' @param index Index in forecasts (integer or date) #' #' @export plotSimils <- function(pred, index) @@ -116,147 +104,160 @@ plotSimils <- function(pred, index) weights = pred$getParams(index)$weights if (is.null(weights)) stop("plotSimils only works on 'Neighbors' forecasts") + par(mfrow=c(1,2), mar=c(4.7,5,1,1), cex.axis=1.5, cex.lab=1.5) + small_weights = weights[ weights < 1/length(weights) ] + large_weights = weights[ weights >= 1/length(weights) ] + hist(small_weights, nclass=25, main="", xlab="Weight < 1/N", ylab="Count") + hist(large_weights, nclass=25, main="", xlab="Weight >= 1/N", ylab="Count") +} + +#' Functional boxplot +#' +#' Draw the functional boxplot on the left, and bivariate plot on the right. +#' +#' @inheritParams computeError +#' @inheritParams plotCurves +#' +#' @export +plotFbox <- function(data, indices=seq_len(data$getSize())) +{ + if (!requireNamespace("rainbow", quietly=TRUE)) + stop("Functional boxplot requires the rainbow package") + + series_matrix = data$getSeries(indices) + # Remove series with NAs + no_NAs_indices = sapply( 1:ncol(series_matrix), + function(i) all(!is.na(series_matrix[,i])) ) + series_matrix = series_matrix[,no_NAs_indices] + + series_fds = rainbow::fds(seq_len(nrow(series_matrix)), series_matrix) par(mar=c(4.7,5,1,1), cex.axis=1.5, cex.lab=1.5) - hist(pred$getParams(index)$weights, nclass=20, xlab="Poids", ylab="Effectif") + rainbow::fboxplot(series_fds, "functional", "hdr", xlab="Time (hours)", ylab="PM10", + plotlegend=FALSE, lwd=2) + rainbow::fboxplot(series_fds, "bivariate", "hdr", plotlegend=FALSE) } -#' Plot error +#' Compute filaments #' -#' Draw error graphs, potentially from several runs of \code{computeForecast} +#' Obtain similar days in the past, and (optionally) plot them -- as black as distances +#' are small. #' -#' @param err Error as returned by \code{computeError} -#' @param cols Colors for each error (default: 1,2,3,...) +#' @inheritParams computeError +#' @param index Index in forecast (integer or date) +#' @param limit Number of neighbors to consider +#' @param plot Should the result be plotted? #' -#' @seealso \code{\link{plotPredReal}},\code{\link{plotFilaments}} -#' \code{\link{plotSimils}},\code{\link{plotFbox}},\code{\link{plotRelativeVariability}} +#' @return A list with +#' \itemize{ +#' \item index : index of the current serie ('today') +#' \item neighb_indices : indices of its neighbors +#' \item colors : colors of neighbors curves (shades of gray) +#' } #' #' @export -plotError <- function(err, cols=seq_along(err)) +computeFilaments <- function(data, pred, index, limit=60, plot=TRUE) { - if (!is.null(err$abs)) - err = list(err) - par(mfrow=c(2,2), mar=c(4.7,5,1,1), cex.axis=1.5, cex.lab=1.5, lwd=2) - L = length(err) - yrange = range( sapply(1:L, function(index) ( err[[index]]$abs$day ) ), na.rm=TRUE ) - for (i in seq_len(L)) - { - plot(err[[i]]$abs$day, type="l", xlab=ifelse(i==1,"Temps (heures)",""), - ylab=ifelse(i==1,"Moyenne |y - y_hat|",""), ylim=yrange, col=cols[i]) - if (i < L) - par(new=TRUE) - } - yrange = range( sapply(1:L, function(index) ( err[[index]]$abs$indices ) ), na.rm=TRUE ) - for (i in seq_len(L)) - { - plot(err[[i]]$abs$indices, type="l", xlab=ifelse(i==1,"Temps (jours)",""), - ylab=ifelse(i==1,"Moyenne |y - y_hat|",""), ylim=yrange, col=cols[i]) - if (i < L) - par(new=TRUE) - } - yrange = range( sapply(1:L, function(index) ( err[[index]]$MAPE$day ) ), na.rm=TRUE ) - for (i in seq_len(L)) + weights <- pred$getParams(index)$weights + if (is.null(weights) || is.na(pred$getParams(index)$weights[1])) + stop("computeFilaments requires a serie without NAs") + + nn <- min(limit, length(weights)) + sorted_dists = sort(-log(weights), index.return=TRUE) + # Compute colors for each neighbor (from darkest to lightest), if weights differ + if ( any( weights != weights[1] ) ) { - plot(err[[i]]$MAPE$day, type="l", xlab=ifelse(i==1,"Temps (heures)",""), - ylab=ifelse(i==1,"MAPE moyen",""), ylim=yrange, col=cols[i]) - if (i < L) - par(new=TRUE) + min_dist = min(sorted_dists$x[1:nn]) + max_dist = max(sorted_dists$x[1:nn]) + color_values = floor(19.5*(sorted_dists$x[1:nn]-min_dist)/(max_dist-min_dist)) + 1 + colors = gray.colors(20,0.1,0.9)[color_values] #TODO: 20 == magic number } - yrange = range( sapply(1:L, function(index) ( err[[index]]$MAPE$indices ) ), na.rm=TRUE ) - for (i in seq_len(L)) + else + colors <- rep(colors()[17], length(weights)) + + if (plot) { - plot(err[[i]]$MAPE$indices, type="l", xlab=ifelse(i==1,"Temps (jours)",""), - ylab=ifelse(i==1,"MAPE moyen",""), ylim=yrange, col=cols[i]) - if (i < L) + # Complete series with (past and present) tomorrows + ref_serie = c( data$getCenteredSerie( pred$getIndexInData(index)-1 ), + data$getCenteredSerie( pred$getIndexInData(index) ) ) + centered_series = rbind( + data$getCenteredSeries( pred$getParams(index)$indices-1 ), + data$getCenteredSeries( pred$getParams(index)$indices ) ) + yrange = range( ref_serie, + quantile(centered_series, probs=c(0.025,0.975), na.rm=TRUE) ) + par(mar=c(4.7,5,1,1), cex.axis=1.5, cex.lab=1.5, lwd=2) + for (i in nn:1) + { + plot(centered_series[,sorted_dists$ix[i]], ylim=yrange, type="l", col=colors[i], + xlab=ifelse(i==1,"Time (hours)",""), ylab=ifelse(i==1,"Centered PM10","")) par(new=TRUE) + } + # Also plot ref curve, in red + plot(ref_serie, ylim=yrange, type="l", col="#FF0000", xlab="", ylab="") + dot_mark <- 0.5 + which.max( pred$getForecast(1) == + data$getSerie( pred$getIndexInData(1) )[1:length(pred$getForecast(1))] ) + abline(v=24+dot_mark, lty=2, col=colors()[56], lwd=1) } + + list( + "index"=pred$getIndexInData(index), + "neighb_indices"=pred$getParams(index)$indices[sorted_dists$ix[1:nn]], + "colors"=colors) } -#' Functional boxplot +#' Functional boxplot on filaments #' -#' Draw the functional boxplot on the left, and bivariate plot on the right +#' Draw the functional boxplot on filaments obtained by \code{computeFilaments()}. #' -#' @param data Object return by \code{getData} -#' @param fiter Optional filter: return TRUE on indices to process -#' @param plot_bivariate Should the bivariate plot appear? +#' @inheritParams computeError +#' @param fil Output of \code{computeFilaments} +#' @param predict_from First predicted time step #' #' @export -plotFbox <- function(data, filter=function(index) TRUE, plot_bivariate=TRUE) +plotFilamentsBox = function(data, fil, predict_from) { if (!requireNamespace("rainbow", quietly=TRUE)) stop("Functional boxplot requires the rainbow package") - L = length(data$getCenteredSerie(2)) - series_matrix = sapply(1:data$getSize(), function(index) { - if (filter(index)) - as.matrix(data$getSerie(index)) - else - rep(NA,L) - }) - # TODO: merge with previous step: only one pass should be required - no_NAs_indices = sapply( 1:ncol(series_matrix), - function(i) all(!is.na(series_matrix[,i])) ) - series_matrix = series_matrix[,no_NAs_indices] - + series_matrix = rbind( + data$getSeries(fil$neighb_indices-1), data$getSeries(fil$neighb_indices) ) series_fds = rainbow::fds(seq_len(nrow(series_matrix)), series_matrix) - if (plot_bivariate) - par(mfrow=c(1,2)) + par(mar=c(4.7,5,1,1), cex.axis=1.5, cex.lab=1.5) - rainbow::fboxplot(series_fds, "functional", "hdr", xlab="Temps (heures)", ylab="PM10", + rainbow::fboxplot(series_fds, "functional", "hdr", xlab="Time (hours)", ylab="PM10", plotlegend=FALSE, lwd=2) - if (plot_bivariate) - rainbow::fboxplot(series_fds, "bivariate", "hdr", plotlegend=FALSE) -} -#' Functional boxplot on filaments -#' -#' Draw the functional boxplot on filaments obtained by \code{computeFilaments} -#' -#' @param data Object return by \code{getData} -#' @param indices Indices as output by \code{computeFilaments} -#' -#' @export -plotFilamentsBox = function(data, indices, ...) -{ - past_neighbs_indices = head(indices,-1) - plotFbox(data, function(i) i %in% past_neighbs_indices, plot_bivariate=FALSE) - par(new=TRUE) - # "Magic" found at http://stackoverflow.com/questions/13842560/get-xlim-from-a-plot-in-r + # "Magic": http://stackoverflow.com/questions/13842560/get-xlim-from-a-plot-in-r usr <- par("usr") yr <- (usr[4] - usr[3]) / 27 - plot(data$getSerie(tail(indices,1)), type="l", lwd=2, lty=2, + par(new=TRUE) + plot(c(data$getSerie(fil$index-1),data$getSerie(fil$index)), type="l", lwd=2, lty=2, ylim=c(usr[3] + yr, usr[4] - yr), xlab="", ylab="") + abline(v=24+predict_from-0.5, lty=2, col=colors()[56]) } #' Plot relative conditional variability / absolute variability #' #' Draw the relative conditional variability / absolute variability based on filaments -#' obtained by \code{computeFilaments} +#' obtained by \code{computeFilaments()}. #' -#' @param data Object return by \code{getData} -#' @param indices Indices as output by \code{computeFilaments} +#' @inheritParams computeError +#' @inheritParams plotFilamentsBox #' #' @export -plotRelativeVariability = function(data, indices, ...) +plotRelVar = function(data, fil, predict_from) { - ref_series = t( sapply(indices, function(i) { - c( data$getSerie(i), data$getSerie(i+1) ) - }) ) - ref_var = apply(ref_series, 2, sd) - - # Determine indices of no-NAs days followed by no-NAs tomorrows - fdays = c() - for (i in 1:(tail(indices,1)-1)) - { - if ( !any(is.na(data$getSerie(i)) | is.na(data$getSerie(i+1))) ) - fdays = c(fdays, i) - } - global_var = c( apply(data$getSerie(fdays),2,sd), apply(data$getSerie(fdays+1),2,sd) ) + ref_var = c( apply(data$getSeries(fil$neighb_indices-1),1,sd), + apply(data$getSeries(fil$neighb_indices),1,sd) ) + tdays = .getNoNA2(data, 2, fil$index) + global_var = c( + apply(data$getSeries(tdays-1),1,sd), + apply(data$getSeries(tdays),1,sd) ) yrange = range(ref_var, global_var) par(mar=c(4.7,5,1,1), cex.axis=1.5, cex.lab=1.5) plot(ref_var, type="l", col=1, lwd=3, ylim=yrange, - xlab="Temps (heures)", ylab="Écart-type") + xlab="Time (hours)", ylab="Standard deviation") par(new=TRUE) - plot(random_var, type="l", col=2, lwd=3, ylim=yrange, xlab="", ylab="") - abline(v=24, lty=2, col=colors()[56]) + plot(global_var, type="l", col=2, lwd=3, ylim=yrange, xlab="", ylab="") + abline(v=24+predict_from-0.5, lty=2, col=colors()[56]) }