X-Git-Url: https://git.auder.net/?p=talweg.git;a=blobdiff_plain;f=pkg%2FR%2Fplot.R;h=0f895bd16483795302623b53ea983f3ab9c2cd92;hp=372abf0a99e086cceb9fec1dc5f9da9c5907da90;hb=HEAD;hpb=6d50a76fc27236cb056a479be395ebe467666c8b diff --git a/pkg/R/plot.R b/pkg/R/plot.R index 372abf0..0f895bd 100644 --- a/pkg/R/plot.R +++ b/pkg/R/plot.R @@ -1,8 +1,8 @@ #' Plot curves #' -#' Plot a range of curves in data +#' Plot a range of curves in data. #' -#' @param data Object of class Data +#' @inheritParams computeError #' @param indices Range of indices (integers or dates) #' #' @export @@ -11,93 +11,91 @@ plotCurves <- function(data, indices=seq_len(data$getSize())) series = data$getSeries(indices) yrange = quantile(series, probs=c(0.025,0.975), na.rm=TRUE) par(mar=c(4.7,5,1,1), cex.axis=1.5, cex.lab=1.5) - for (i in seq_along(indices)) - { - plot(series[,i], type="l", ylim=yrange, - xlab=ifelse(i==1,"Temps (en heures)",""), ylab=ifelse(i==1,"PM10","")) - if (i < length(indices)) - par(new=TRUE) - } + matplot(series, type="l", ylim=yrange, xlab="Time (hours)", ylab="PM10") } #' Plot error #' -#' Draw error graphs, potentially from several runs of \code{computeForecast} +#' Draw error graphs, potentially from several runs of \code{computeForecast()}. #' -#' @param err Error as returned by \code{computeError} +#' @param err Error as returned by \code{computeError()} #' @param cols Colors for each error (default: 1,2,3,...) +#' @param agg Aggregation level ("day", "week" or "month") #' #' @seealso \code{\link{plotCurves}}, \code{\link{plotPredReal}}, -#' \code{\link{plotSimils}}, \code{\link{plotFbox}}, -#' \code{\link{computeFilaments}, }\code{\link{plotFilamentsBox}}, \code{\link{plotRelVar}} +#' \code{\link{plotSimils}}, \code{\link{plotFbox}}, \code{\link{computeFilaments}}, +#' \code{\link{plotFilamentsBox}}, \code{\link{plotRelVar}} #' #' @export -plotError <- function(err, cols=seq_along(err)) +plotError <- function(err, cols=seq_along(err), agg="day") { if (!is.null(err$abs)) err = list(err) - par(mfrow=c(2,2), mar=c(4.7,5,1,1), cex.axis=1.5, cex.lab=1.5, lwd=2) + par(mfrow=c(2,2), mar=c(4.7,5,1,1), cex.axis=1.5, cex.lab=1.5) L = length(err) - yrange = range( sapply(1:L, function(i) ( err[[i]]$abs$day ) ), na.rm=TRUE ) - for (i in seq_len(L)) - { - plot(err[[i]]$abs$day, type="l", xlab=ifelse(i==1,"Temps (heures)",""), - ylab=ifelse(i==1,"Moyenne |y - y_hat|",""), ylim=yrange, col=cols[i]) - if (i < L) - par(new=TRUE) - } - yrange = range( sapply(1:L, function(i) ( err[[i]]$abs$indices ) ), na.rm=TRUE ) - for (i in seq_len(L)) - { - plot(err[[i]]$abs$indices, type="l", xlab=ifelse(i==1,"Temps (jours)",""), - ylab=ifelse(i==1,"Moyenne |y - y_hat|",""), ylim=yrange, col=cols[i]) - if (i < L) - par(new=TRUE) - } - yrange = range( sapply(1:L, function(i) ( err[[i]]$MAPE$day ) ), na.rm=TRUE ) - for (i in seq_len(L)) - { - plot(err[[i]]$MAPE$day, type="l", xlab=ifelse(i==1,"Temps (heures)",""), - ylab=ifelse(i==1,"MAPE moyen",""), ylim=yrange, col=cols[i]) - if (i < L) - par(new=TRUE) - } - yrange = range( sapply(1:L, function(i) ( err[[i]]$MAPE$indices ) ), na.rm=TRUE ) - for (i in seq_len(L)) - { - plot(err[[i]]$MAPE$indices, type="l", xlab=ifelse(i==1,"Temps (jours)",""), - ylab=ifelse(i==1,"MAPE moyen",""), ylim=yrange, col=cols[i]) - if (i < L) - par(new=TRUE) - } + + yrange = range( sapply(1:L, function(i) err[[i]]$abs$day), na.rm=TRUE ) + matplot(sapply( seq_len(L), function(i) err[[i]]$abs$day ), type="l", + xlab="Time (hours)", ylab="Mean |y - y_hat|", ylim=yrange, col=cols, lwd=2, lty=1) + + agg_curves <- sapply( seq_len(L), function(i) { + curve <- err[[i]]$abs$indices + delta <- if (agg=="day") 1 else if (agg=="week") 7 else if (agg=="month") 30 + vapply( seq(1,length(curve),delta), function(i) { + mean(curve[i:(i+delta-1)], na.rm=TRUE) + }, vector("double",1), USE.NAMES=FALSE ) + }) + yrange = range(agg_curves, na.rm=TRUE) + matplot(agg_curves, type="l", xlab=paste("Time (",agg,"s)", sep=""), + ylab="Mean |y - y_hat|", ylim=yrange, col=cols, lwd=2, lty=1) + + yrange = range( sapply(1:L, function(i) err[[i]]$MAPE$day), na.rm=TRUE ) + matplot(sapply( seq_len(L), function(i) err[[i]]$MAPE$day ), type="l", + xlab="Time (hours)", ylab="Mean MAPE", ylim=yrange, col=cols, lwd=2, lty=1) + + agg_curves <- sapply( seq_len(L), function(i) { + curve <- err[[i]]$MAPE$indices + delta <- if (agg=="day") 1 else if (agg=="week") 7 else if (agg=="month") 30 + vapply( seq(1,length(curve),delta), function(i) { + mean(curve[i:(i+delta-1)], na.rm=TRUE) + }, vector("double",1), USE.NAMES=FALSE ) + }) + yrange = range(agg_curves, na.rm=TRUE) + matplot(agg_curves, type="l", xlab=paste("Time (",agg,"s)", sep=""), + ylab="Mean MAPE", ylim=yrange, col=cols, lwd=2, lty=1) } #' Plot measured / predicted #' -#' Plot measured curve (in black) and predicted curve (in blue) +#' Plot measured curve (in black) and predicted curve (in blue). #' -#' @param data Object return by \code{getData} -#' @param pred Object as returned by \code{computeForecast} +#' @inheritParams computeError #' @param index Index in forecasts (integer or date) #' #' @export plotPredReal <- function(data, pred, index) { - horizon = length(pred$getSerie(1)) - measure = data$getSerie( pred$getIndexInData(index)+1 )[1:horizon] - prediction = pred$getSerie(index) + prediction = pred$getForecast(index) + measure = data$getSerie( pred$getIndexInData(index) )[1:length(pred$getForecast(1))] + + # Remove the common part, where prediction == measure + dot_mark <- ifelse(prediction[1]==measure[1], + which.max(seq_along(prediction)[prediction==measure]), 0) + prediction = prediction[(dot_mark+1):length(prediction)] + measure = measure[(dot_mark+1):length(measure)] + yrange = range(measure, prediction) par(mar=c(4.7,5,1,1), cex.axis=1.5, cex.lab=1.5, lwd=3) - plot(measure, type="l", ylim=yrange, xlab="Temps (en heures)", ylab="PM10") + plot(measure, type="l", ylim=yrange, xlab="Time (hours)", ylab="PM10") par(new=TRUE) plot(prediction, type="l", col="#0000FF", ylim=yrange, xlab="", ylab="") } #' Plot similarities #' -#' Plot histogram of similarities (weights) +#' Plot histogram of similarities (weights), for 'Neighbors' method. #' -#' @param pred Object as returned by \code{computeForecast} +#' @inheritParams computeError #' @param index Index in forecasts (integer or date) #' #' @export @@ -106,17 +104,19 @@ plotSimils <- function(pred, index) weights = pred$getParams(index)$weights if (is.null(weights)) stop("plotSimils only works on 'Neighbors' forecasts") - par(mar=c(4.7,5,1,1), cex.axis=1.5, cex.lab=1.5) - hist(pred$getParams(index)$weights, nclass=20, xlab="Poids", ylab="Effectif") + par(mfrow=c(1,2), mar=c(4.7,5,1,1), cex.axis=1.5, cex.lab=1.5) + small_weights = weights[ weights < 1/length(weights) ] + large_weights = weights[ weights >= 1/length(weights) ] + hist(small_weights, nclass=25, main="", xlab="Weight < 1/N", ylab="Count") + hist(large_weights, nclass=25, main="", xlab="Weight >= 1/N", ylab="Count") } #' Functional boxplot #' -#' Draw the functional boxplot on the left, and bivariate plot on the right +#' Draw the functional boxplot on the left, and bivariate plot on the right. #' -#' @param data Object return by \code{getData} -#' @param indices integer or date indices to process -#' @param plot_bivariate Should the bivariate plot appear? +#' @inheritParams computeError +#' @inheritParams plotCurves #' #' @export plotFbox <- function(data, indices=seq_len(data$getSize())) @@ -132,17 +132,18 @@ plotFbox <- function(data, indices=seq_len(data$getSize())) series_fds = rainbow::fds(seq_len(nrow(series_matrix)), series_matrix) par(mar=c(4.7,5,1,1), cex.axis=1.5, cex.lab=1.5) - rainbow::fboxplot(series_fds, "functional", "hdr", xlab="Temps (heures)", ylab="PM10", + rainbow::fboxplot(series_fds, "functional", "hdr", xlab="Time (hours)", ylab="PM10", plotlegend=FALSE, lwd=2) rainbow::fboxplot(series_fds, "bivariate", "hdr", plotlegend=FALSE) } #' Compute filaments #' -#' Get similar days in the past, as black as distances are small +#' Obtain similar days in the past, and (optionally) plot them -- as black as distances +#' are small. #' -#' @param data Object as returned by \code{getData} -#' @param index Index in data (integer or date) +#' @inheritParams computeError +#' @param index Index in forecast (integer or date) #' @param limit Number of neighbors to consider #' @param plot Should the result be plotted? #' @@ -154,100 +155,109 @@ plotFbox <- function(data, indices=seq_len(data$getSize())) #' } #' #' @export -computeFilaments <- function(data, index, limit=60, plot=TRUE) +computeFilaments <- function(data, pred, index, limit=60, plot=TRUE) { - ref_serie = data$getCenteredSerie(index) - if (any(is.na(ref_serie))) + weights <- pred$getParams(index)$weights + if (is.null(weights) || is.na(pred$getParams(index)$weights[1])) stop("computeFilaments requires a serie without NAs") - # Determine indices of no-NAs days followed by no-NAs tomorrows - fdays = getNoNA2(data, 1, dateIndexToInteger(index,data)-1) - # Series + tomorrows in columns, ref_serie first - centered_series = data$getCenteredSeries(fdays) - - # Obtain neighbors (closest for euclidian norm) - L = length(ref_serie) - distances = sqrt( colSums( (centered_series - ref_serie)^2 / L ) ) - sorted_distances = sort(distances, index.return=TRUE) - - # Compute colors for each neighbor (from darkest to lightest) - nn = min(limit, length(distances)) - min_dist = min(sorted_distances$x[1:nn]) - max_dist = max(sorted_distances$x[1:nn]) - color_values = floor( 19.5 * (sorted_distances$x[1:nn]-min_dist) / (max_dist-min_dist) ) + 1 - colors = gray.colors(20,0.1,0.9)[color_values] #TODO: 20 == magic number + nn <- min(limit, length(weights)) + sorted_dists = sort(-log(weights), index.return=TRUE) + # Compute colors for each neighbor (from darkest to lightest), if weights differ + if ( any( weights != weights[1] ) ) + { + min_dist = min(sorted_dists$x[1:nn]) + max_dist = max(sorted_dists$x[1:nn]) + color_values = floor(19.5*(sorted_dists$x[1:nn]-min_dist)/(max_dist-min_dist)) + 1 + colors = gray.colors(20,0.1,0.9)[color_values] #TODO: 20 == magic number + } + else + colors <- rep(colors()[17], length(weights)) if (plot) { # Complete series with (past and present) tomorrows - ref_serie = c(ref_serie,data$getCenteredSerie(index+1)) - centered_series = rbind( centered_series, data$getCenteredSeries(fdays+1) ) - yrange = quantile(cbind(ref_serie,centered_series), probs=c(0.025,0.975), na.rm=TRUE) + ref_serie = c( data$getCenteredSerie( pred$getIndexInData(index)-1 ), + data$getCenteredSerie( pred$getIndexInData(index) ) ) + centered_series = rbind( + data$getCenteredSeries( pred$getParams(index)$indices-1 ), + data$getCenteredSeries( pred$getParams(index)$indices ) ) + yrange = range( ref_serie, + quantile(centered_series, probs=c(0.025,0.975), na.rm=TRUE) ) par(mar=c(4.7,5,1,1), cex.axis=1.5, cex.lab=1.5, lwd=2) for (i in nn:1) { - plot(centered_series[,sorted_distances$ix[i]], ylim=yrange, type="l", col=colors[i], - xlab=ifelse(i==nn,"Temps (en heures)",""), ylab=ifelse(i==nn,"PM10 centré","")) + plot(centered_series[,sorted_dists$ix[i]], ylim=yrange, type="l", col=colors[i], + xlab=ifelse(i==1,"Time (hours)",""), ylab=ifelse(i==1,"Centered PM10","")) par(new=TRUE) } # Also plot ref curve, in red plot(ref_serie, ylim=yrange, type="l", col="#FF0000", xlab="", ylab="") - abline(v=24, lty=2, col=colors()[56], lwd=1) + dot_mark <- 0.5 + which.max( pred$getForecast(1) == + data$getSerie( pred$getIndexInData(1) )[1:length(pred$getForecast(1))] ) + abline(v=24+dot_mark, lty=2, col=colors()[56], lwd=1) } - list("index"=index,"neighb_indices"=fdays[sorted_distances$ix[1:nn]],"colors"=colors) + list( + "index"=pred$getIndexInData(index), + "neighb_indices"=pred$getParams(index)$indices[sorted_dists$ix[1:nn]], + "colors"=colors) } #' Functional boxplot on filaments #' -#' Draw the functional boxplot on filaments obtained by \code{computeFilaments} +#' Draw the functional boxplot on filaments obtained by \code{computeFilaments()}. #' -#' @param data Object return by \code{getData} +#' @inheritParams computeError #' @param fil Output of \code{computeFilaments} +#' @param predict_from First predicted time step #' #' @export -plotFilamentsBox = function(data, fil, ...) +plotFilamentsBox = function(data, fil, predict_from) { if (!requireNamespace("rainbow", quietly=TRUE)) stop("Functional boxplot requires the rainbow package") series_matrix = rbind( - data$getSeries(fil$neighb_indices), data$getSeries(fil$neighb_indices+1) ) + data$getSeries(fil$neighb_indices-1), data$getSeries(fil$neighb_indices) ) series_fds = rainbow::fds(seq_len(nrow(series_matrix)), series_matrix) + par(mar=c(4.7,5,1,1), cex.axis=1.5, cex.lab=1.5) - rainbow::fboxplot(series_fds, "functional", "hdr", xlab="Temps (heures)", ylab="PM10", + rainbow::fboxplot(series_fds, "functional", "hdr", xlab="Time (hours)", ylab="PM10", plotlegend=FALSE, lwd=2) - # "Magic" found at http://stackoverflow.com/questions/13842560/get-xlim-from-a-plot-in-r + # "Magic": http://stackoverflow.com/questions/13842560/get-xlim-from-a-plot-in-r usr <- par("usr") yr <- (usr[4] - usr[3]) / 27 par(new=TRUE) - plot(c(data$getSerie(fil$index),data$getSerie(fil$index+1)), type="l", lwd=2, lty=2, + plot(c(data$getSerie(fil$index-1),data$getSerie(fil$index)), type="l", lwd=2, lty=2, ylim=c(usr[3] + yr, usr[4] - yr), xlab="", ylab="") - abline(v=24, lty=2, col=colors()[56]) + abline(v=24+predict_from-0.5, lty=2, col=colors()[56]) } #' Plot relative conditional variability / absolute variability #' #' Draw the relative conditional variability / absolute variability based on filaments -#' obtained by \code{computeFilaments} +#' obtained by \code{computeFilaments()}. #' -#' @param data Object return by \code{getData} -#' @param fil Output of \code{computeFilaments} +#' @inheritParams computeError +#' @inheritParams plotFilamentsBox #' #' @export -plotRelVar = function(data, fil, ...) +plotRelVar = function(data, fil, predict_from) { - ref_var = c( apply(data$getSeries(fil$neighb_indices),1,sd), - apply(data$getSeries(fil$neighb_indices+1),1,sd) ) - fdays = getNoNA2(data, 1, fil$index-1) - global_var = c( apply(data$getSeries(fdays),1,sd), apply(data$getSeries(fdays+1),1,sd) ) + ref_var = c( apply(data$getSeries(fil$neighb_indices-1),1,sd), + apply(data$getSeries(fil$neighb_indices),1,sd) ) + tdays = .getNoNA2(data, 2, fil$index) + global_var = c( + apply(data$getSeries(tdays-1),1,sd), + apply(data$getSeries(tdays),1,sd) ) yrange = range(ref_var, global_var) par(mar=c(4.7,5,1,1), cex.axis=1.5, cex.lab=1.5) plot(ref_var, type="l", col=1, lwd=3, ylim=yrange, - xlab="Temps (heures)", ylab="Écart-type") + xlab="Time (hours)", ylab="Standard deviation") par(new=TRUE) plot(global_var, type="l", col=2, lwd=3, ylim=yrange, xlab="", ylab="") - abline(v=24, lty=2, col=colors()[56]) + abline(v=24+predict_from-0.5, lty=2, col=colors()[56]) }