#' Plot curves #' #' Plot a range of curves in data #' #' @param data Object of class Data #' @param indices Range of indices (integers or dates) #' #' @export plotCurves <- function(data, indices=seq_len(data$getSize())) { series = data$getSeries(indices) yrange = quantile(series, probs=c(0.025,0.975), na.rm=TRUE) par(mar=c(4.7,5,1,1), cex.axis=1.5, cex.lab=1.5) for (i in seq_along(indices)) { plot(series[,i], type="l", ylim=yrange, xlab=ifelse(i==1,"Time (hours)",""), ylab=ifelse(i==1,"PM10","")) if (i < length(indices)) par(new=TRUE) } } #' Plot error #' #' Draw error graphs, potentially from several runs of \code{computeForecast} #' #' @param err Error as returned by \code{computeError} #' @param cols Colors for each error (default: 1,2,3,...) #' #' @seealso \code{\link{plotCurves}}, \code{\link{plotPredReal}}, #' \code{\link{plotSimils}}, \code{\link{plotFbox}}, \code{\link{computeFilaments}}, #' \code{\link{plotFilamentsBox}}, \code{\link{plotRelVar}} #' #' @export plotError <- function(err, cols=seq_along(err)) { if (!is.null(err$abs)) err = list(err) par(mfrow=c(2,2), mar=c(4.7,5,1,1), cex.axis=1.5, cex.lab=1.5, lwd=2) L = length(err) yrange = range( sapply(1:L, function(i) ( err[[i]]$abs$day ) ), na.rm=TRUE ) for (i in seq_len(L)) { plot(err[[i]]$abs$day, type="l", xlab=ifelse(i==1,"Time (hours)",""), ylab=ifelse(i==1,"Mean |y - y_hat|",""), ylim=yrange, col=cols[i]) if (i < L) par(new=TRUE) } yrange = range( sapply(1:L, function(i) ( err[[i]]$abs$indices ) ), na.rm=TRUE ) for (i in seq_len(L)) { plot(err[[i]]$abs$indices, type="l", xlab=ifelse(i==1,"Time (days)",""), ylab=ifelse(i==1,"Mean |y - y_hat|",""), ylim=yrange, col=cols[i]) if (i < L) par(new=TRUE) } yrange = range( sapply(1:L, function(i) ( err[[i]]$MAPE$day ) ), na.rm=TRUE ) for (i in seq_len(L)) { plot(err[[i]]$MAPE$day, type="l", xlab=ifelse(i==1,"Time (hours)",""), ylab=ifelse(i==1,"Mean MAPE",""), ylim=yrange, col=cols[i]) if (i < L) par(new=TRUE) } yrange = range( sapply(1:L, function(i) ( err[[i]]$MAPE$indices ) ), na.rm=TRUE ) for (i in seq_len(L)) { plot(err[[i]]$MAPE$indices, type="l", xlab=ifelse(i==1,"Time (days)",""), ylab=ifelse(i==1,"Mean MAPE",""), ylim=yrange, col=cols[i]) if (i < L) par(new=TRUE) } } #' Plot measured / predicted #' #' Plot measured curve (in black) and predicted curve (in blue) #' #' @param data Object return by \code{getData} #' @param pred Object as returned by \code{computeForecast} #' @param index Index in forecasts (integer or date) #' #' @export plotPredReal <- function(data, pred, index) { horizon = length(pred$getForecast(1)) measure = data$getSerie( pred$getIndexInData(index)+1 )[1:horizon] prediction = pred$getForecast(index) yrange = range(measure, prediction) par(mar=c(4.7,5,1,1), cex.axis=1.5, cex.lab=1.5, lwd=3) plot(measure, type="l", ylim=yrange, xlab="Time (hours)", ylab="PM10") par(new=TRUE) plot(prediction, type="l", col="#0000FF", ylim=yrange, xlab="", ylab="") } #' Plot similarities #' #' Plot histogram of similarities (weights) #' #' @param pred Object as returned by \code{computeForecast} #' @param index Index in forecasts (integer or date) #' #' @export plotSimils <- function(pred, index) { weights = pred$getParams(index)$weights if (is.null(weights)) stop("plotSimils only works on 'Neighbors' forecasts") par(mar=c(4.7,5,1,1), cex.axis=1.5, cex.lab=1.5) hist(pred$getParams(index)$weights, nclass=20, main="", xlab="Weight", ylab="Count") } #' Functional boxplot #' #' Draw the functional boxplot on the left, and bivariate plot on the right #' #' @param data Object return by \code{getData} #' @param indices integer or date indices to process #' #' @export plotFbox <- function(data, indices=seq_len(data$getSize())) { if (!requireNamespace("rainbow", quietly=TRUE)) stop("Functional boxplot requires the rainbow package") series_matrix = data$getSeries(indices) # Remove series with NAs no_NAs_indices = sapply( 1:ncol(series_matrix), function(i) all(!is.na(series_matrix[,i])) ) series_matrix = series_matrix[,no_NAs_indices] series_fds = rainbow::fds(seq_len(nrow(series_matrix)), series_matrix) par(mar=c(4.7,5,1,1), cex.axis=1.5, cex.lab=1.5) rainbow::fboxplot(series_fds, "functional", "hdr", xlab="Time (hours)", ylab="PM10", plotlegend=FALSE, lwd=2) rainbow::fboxplot(series_fds, "bivariate", "hdr", plotlegend=FALSE) } #' Compute filaments #' #' Get similar days in the past, as black as distances are small #' #' @param data Object as returned by \code{getData} #' @param pred Object of class Forecast #' @param index Index in forecast (integer or date) #' @param limit Number of neighbors to consider #' @param plot Should the result be plotted? #' #' @return A list with #' \itemize{ #' \item index : index of the current serie ('today') #' \item neighb_indices : indices of its neighbors #' \item colors : colors of neighbors curves (shades of gray) #' } #' #' @export computeFilaments <- function(data, pred, index, limit=60, plot=TRUE) { ref_serie = data$getCenteredSerie( pred$getIndexInData(index) ) if (any(is.na(ref_serie))) stop("computeFilaments requires a serie without NAs") # Compute colors for each neighbor (from darkest to lightest) sorted_dists = sort(-log(pred$getParams(index)$weights), index.return=TRUE) nn = min(limit, length(sorted_dists$x)) min_dist = min(sorted_dists$x[1:nn]) max_dist = max(sorted_dists$x[1:nn]) color_values = floor(19.5*(sorted_dists$x[1:nn]-min_dist)/(max_dist-min_dist)) + 1 colors = gray.colors(20,0.1,0.9)[color_values] #TODO: 20 == magic number if (plot) { # Complete series with (past and present) tomorrows ref_serie = c(ref_serie, data$getCenteredSerie( pred$getIndexInData(index)+1 )) centered_series = rbind( data$getCenteredSeries( pred$getParams(index)$indices ), data$getCenteredSeries( pred$getParams(index)$indices+1 ) ) yrange = range( ref_serie, quantile(centered_series, probs=c(0.025,0.975), na.rm=TRUE) ) par(mar=c(4.7,5,1,1), cex.axis=1.5, cex.lab=1.5, lwd=2) for (i in nn:1) { plot(centered_series[,sorted_dists$ix[i]], ylim=yrange, type="l", col=colors[i], xlab=ifelse(i==1,"Time (hours)",""), ylab=ifelse(i==1,"Centered PM10","")) par(new=TRUE) } # Also plot ref curve, in red plot(ref_serie, ylim=yrange, type="l", col="#FF0000", xlab="", ylab="") abline(v=24, lty=2, col=colors()[56], lwd=1) } list( "index"=pred$getIndexInData(index), "neighb_indices"=pred$getParams(index)$indices[sorted_dists$ix[1:nn]], "colors"=colors) } #' Functional boxplot on filaments #' #' Draw the functional boxplot on filaments obtained by \code{computeFilaments} #' #' @param data Object return by \code{getData} #' @param fil Output of \code{computeFilaments} #' #' @export plotFilamentsBox = function(data, fil) { if (!requireNamespace("rainbow", quietly=TRUE)) stop("Functional boxplot requires the rainbow package") series_matrix = rbind( data$getSeries(fil$neighb_indices), data$getSeries(fil$neighb_indices+1) ) series_fds = rainbow::fds(seq_len(nrow(series_matrix)), series_matrix) par(mar=c(4.7,5,1,1), cex.axis=1.5, cex.lab=1.5) rainbow::fboxplot(series_fds, "functional", "hdr", xlab="Time (hours)", ylab="PM10", plotlegend=FALSE, lwd=2) # "Magic": http://stackoverflow.com/questions/13842560/get-xlim-from-a-plot-in-r usr <- par("usr") yr <- (usr[4] - usr[3]) / 27 par(new=TRUE) plot(c(data$getSerie(fil$index),data$getSerie(fil$index+1)), type="l", lwd=2, lty=2, ylim=c(usr[3] + yr, usr[4] - yr), xlab="", ylab="") abline(v=24, lty=2, col=colors()[56]) } #' Plot relative conditional variability / absolute variability #' #' Draw the relative conditional variability / absolute variability based on filaments #' obtained by \code{computeFilaments} #' #' @param data Object return by \code{getData} #' @param fil Output of \code{computeFilaments} #' #' @export plotRelVar = function(data, fil) { ref_var = c( apply(data$getSeries(fil$neighb_indices),1,sd), apply(data$getSeries(fil$neighb_indices+1),1,sd) ) fdays = getNoNA2(data, 1, fil$index-1) global_var = c( apply(data$getSeries(fdays),1,sd), apply(data$getSeries(fdays+1),1,sd) ) yrange = range(ref_var, global_var) par(mar=c(4.7,5,1,1), cex.axis=1.5, cex.lab=1.5) plot(ref_var, type="l", col=1, lwd=3, ylim=yrange, xlab="Time (hours)", ylab="Standard deviation") par(new=TRUE) plot(global_var, type="l", col=2, lwd=3, ylim=yrange, xlab="", ylab="") abline(v=24, lty=2, col=colors()[56]) }