#' getData #' #' Acquire data as a Data object; see ?Data. #' #' Since series are given in columns (database format), this function builds series one #' by one and incrementally grows a Data object which is finally returned. #' #' @param ts_data Time-series, as a data frame (DB style: 2 columns, first is date/time, #' second is value) or a CSV file. #' @param exo_data Exogenous variables, as a data frame or a CSV file; first column is #' dates, next block are measurements for the day, and final block are exogenous #' forecasts (for the same day). #' @param input_tz Timezone in the input files ("GMT" or e.g. "Europe/Paris") #' @param date_format How date/time are stored (e.g. year/month/day hour:minutes; #' see ?strptime) #' @param working_tz Timezone to work with ("GMT" or e.g. "Europe/Paris") #' @param predict_at When does the prediction take place? Integer, in hours. Default: 0 #' @param limit Number of days to extract (default: Inf, for "all") #' #' @return An object of class Data #' #' @examples #' ts_data = read.csv(system.file("extdata","pm10_mesures_H_loc.csv",package="talweg")) #' exo_data = read.csv(system.file("extdata","meteo_extra_noNAs.csv",package="talweg")) #' data = getData(ts_data, exo_data, limit=120) #' @export getData = function(ts_data, exo_data, input_tz="GMT", date_format="%d/%m/%Y %H:%M", working_tz="GMT", predict_at=0, limit=Inf) { # Sanity checks (not full, but sufficient at this stage) if (!is.character(input_tz) || !is.character(working_tz)) stop("Bad timezone (see ?timezone)") input_tz = input_tz[1] working_tz = working_tz[1] if ( (!is.data.frame(ts_data) && !is.character(ts_data)) || (!is.data.frame(exo_data) && !is.character(exo_data)) ) stop("Bad time-series / exogenous input (data frame or CSV file)") if (is.character(ts_data)) ts_data = ts_data[1] if (is.character(exo_data)) exo_data = exo_data[1] predict_at = as.integer(predict_at)[1] if (predict_at<0 || predict_at>23) stop("Bad predict_at (0-23)") if (!is.character(date_format)) stop("Bad date_format (character)") date_format = date_format[1] ts_df = if (is.character(ts_data)) read.csv(ts_data) else ts_data # Convert to the desired timezone (usually "GMT" or "Europe/Paris") formatted_dates_POSIXlt = strptime(as.character(ts_df[,1]), date_format, tz=input_tz) ts_df[,1] = format( as.POSIXct(formatted_dates_POSIXlt, tz=input_tz), tz=working_tz, usetz=TRUE) exo_df = if (is.character(exo_data)) read.csv(exo_data) else exo_data # Times in exogenous variables file are ignored: no conversions required line = 1 #index in PM10 file (24 lines for 1 cell) nb_lines = nrow(ts_df) nb_exos = ( ncol(exo_df) - 1 ) / 2 data = Data$new() i = 1 #index of a cell in data while (line <= nb_lines) { time = c() serie = c() repeat { { time = c(time, ts_df[line,1]) serie = c(serie, ts_df[line,2]) line = line + 1 }; if (line >= nb_lines + 1 || as.POSIXlt(ts_df[line-1,1],tz=working_tz)$hour == predict_at) { break } } exo = as.data.frame( exo_df[i,2:(1+nb_exos)] ) exo_hat = if (i < nrow(exo_df)) as.data.frame( exo_df[i+1,(1+nb_exos+1):(1+2*nb_exos)] ) else NA #exogenous prediction for next day are useless on last day data$append(time, serie, exo, exo_hat) if (i >= limit) break i = i + 1 } if (length(data$getCenteredSerie(1)) < length(data$getCenteredSerie(2))) data$removeFirst() if (length(data$getCenteredSerie(data$getSize())) < length(data$getCenteredSerie(data$getSize()-1))) { data$removeLast() } data }