#' @include Forecaster.R #' #' Neighbors2 Forecaster #' #' Predict tomorrow as a weighted combination of "futures of the past" days. #' Inherits \code{\link{Forecaster}} #' Neighbors2Forecaster = R6::R6Class("Neighbors2Forecaster", inherit = Forecaster, public = list( predictShape = function(data, today, memory, horizon, ...) { # (re)initialize computed parameters private$.params <- list("weights"=NA, "indices"=NA, "window"=NA) # Do not forecast on days with NAs (TODO: softer condition...) if (any(is.na(data$getCenteredSerie(today)))) return (NA) # Determine indices of no-NAs days followed by no-NAs tomorrows fdays = getNoNA2(data, max(today-memory,1), today-1) # Get optional args simtype = ifelse(hasArg("simtype"), list(...)$simtype, "mix") #or "endo", or "exo" kernel = ifelse(hasArg("kernel"), list(...)$kernel, "Gauss") #or "Epan" if (hasArg(h_window)) { return ( private$.predictShapeAux(data, fdays, today, horizon, list(...)$h_window, kernel, simtype, TRUE) ) } # Indices of similar days for cross-validation; TODO: 20 = magic number cv_days = getSimilarDaysIndices(today, data, limit=20, same_season=FALSE, days_in=fdays) # Function to optimize h : h |--> sum of prediction errors on last 45 "similar" days errorOnLastNdays = function(h, kernel, simtype) { error = 0 nb_jours = 0 for (i in seq_along(cv_days)) { # mix_strategy is never used here (simtype != "mix"), therefore left blank prediction = private$.predictShapeAux(data, fdays, cv_days[i], horizon, h, kernel, simtype, FALSE) if (!is.na(prediction[1])) { nb_jours = nb_jours + 1 error = error + mean((data$getSerie(cv_days[i]+1)[1:horizon] - prediction)^2) } } return (error / nb_jours) } if (simtype != "endo") { h_best_exo = optimize( errorOnLastNdays, c(0,7), kernel=kernel, simtype="exo")$minimum } if (simtype != "exo") { h_best_endo = optimize( errorOnLastNdays, c(0,7), kernel=kernel, simtype="endo")$minimum } if (simtype == "endo") { return (private$.predictShapeAux(data, fdays, today, horizon, h_best_endo, kernel, "endo", TRUE)) } if (simtype == "exo") { return (private$.predictShapeAux(data, fdays, today, horizon, h_best_exo, kernel, "exo", TRUE)) } if (simtype == "mix") { h_best_mix = c(h_best_endo,h_best_exo) return(private$.predictShapeAux(data, fdays, today, horizon, h_best_mix, kernel, "mix", TRUE)) } } ), private = list( # Precondition: "today" is full (no NAs) .predictShapeAux = function(data, fdays, today, horizon, h, kernel, simtype, final_call) { fdays_cut = fdays[ fdays < today ] # TODO: 3 = magic number if (length(fdays_cut) < 3) return (NA) # Neighbors: days in "same season"; TODO: 60 == magic number... fdays = getSimilarDaysIndices(today, data, limit=60, same_season=TRUE, days_in=fdays_cut) if (length(fdays) <= 1) return (NA) levelToday = data$getLevel(today) distances = sapply(fdays, function(i) abs(data$getLevel(i)-levelToday)) #TODO: 2, 3, 5, 10 magic numbers here... dist_thresh = 2 min_neighbs = min(3,length(fdays)) repeat { same_pollution = (distances <= dist_thresh) nb_neighbs = sum(same_pollution) if (nb_neighbs >= min_neighbs) #will eventually happen break dist_thresh = dist_thresh + 3 } fdays = fdays[same_pollution] max_neighbs = 10 if (nb_neighbs > max_neighbs) { # Keep only max_neighbs closest neighbors fdays = fdays[ sort(distances[same_pollution],index.return=TRUE)$ix[1:max_neighbs] ] } if (length(fdays) == 1) #the other extreme... { if (final_call) { private$.params$weights <- 1 private$.params$indices <- fdays private$.params$window <- 1 } return ( data$getSerie(fdays[1])[1:horizon] ) #what else?! } if (simtype != "exo") { h_endo = ifelse(simtype=="mix", h[1], h) # Distances from last observed day to days in the past serieToday = data$getSerie(today) distances2 = sapply(fdays, function(i) { delta = serieToday - data$getSerie(i) mean(delta^2) }) sd_dist = sd(distances2) if (sd_dist < .Machine$double.eps) { # warning("All computed distances are very close: stdev too small") sd_dist = 1 #mostly for tests... FIXME: } simils_endo = if (kernel=="Gauss") exp(-distances2/(sd_dist*h_endo^2)) else { # Epanechnikov u = 1 - distances2/(sd_dist*h_endo^2) u[abs(u)>1] = 0. u } } if (simtype != "endo") { h_exo = ifelse(simtype=="mix", h[2], h) M = matrix( nrow=1+length(fdays), ncol=1+length(data$getExo(today)) ) M[1,] = c( data$getLevel(today), as.double(data$getExo(today)) ) for (i in seq_along(fdays)) M[i+1,] = c( data$getLevel(fdays[i]), as.double(data$getExo(fdays[i])) ) sigma = cov(M) #NOTE: robust covariance is way too slow # TODO: 10 == magic number; more robust way == det, or always ginv() sigma_inv = if (length(fdays) > 10) solve(sigma) else MASS::ginv(sigma) # Distances from last observed day to days in the past distances2 = sapply(seq_along(fdays), function(i) { delta = M[1,] - M[i+1,] delta %*% sigma_inv %*% delta }) sd_dist = sd(distances2) if (sd_dist < .25 * sqrt(.Machine$double.eps)) { # warning("All computed distances are very close: stdev too small") sd_dist = 1 #mostly for tests... FIXME: } simils_exo = if (kernel=="Gauss") exp(-distances2/(sd_dist*h_exo^2)) else { # Epanechnikov u = 1 - distances2/(sd_dist*h_exo^2) u[abs(u)>1] = 0. u } } similarities = if (simtype == "exo") simils_exo else if (simtype == "endo") simils_endo else #mix simils_endo * simils_exo similarities = similarities / sum(similarities) prediction = rep(0, horizon) for (i in seq_along(fdays)) prediction = prediction + similarities[i] * data$getSerie(fdays[i]+1)[1:horizon] if (final_call) { prediction = prediction - mean(prediction) #predict centered serie (artificial...) private$.params$weights <- similarities private$.params$indices <- fdays private$.params$window <- if (simtype=="endo") h_endo else if (simtype=="exo") h_exo else #mix c(h_endo,h_exo) } return (prediction) } ) )