#' @include Forecaster.R #' #' @title Neighbors Forecaster #' #' @description Predict tomorrow as a weighted combination of "futures of the past" days. #' Inherits \code{\link{Forecaster}} NeighborsForecaster = setRefClass( Class = "NeighborsForecaster", contains = "Forecaster", methods = list( initialize = function(...) { callSuper(...) }, predictShape = function(today, memory, horizon, ...) { # (re)initialize computed parameters params <<- list("weights"=NA, "indices"=NA, "window"=NA) # Get optional args simtype = ifelse(hasArg("simtype"), list(...)$simtype, "mix") #or "endo", or "exo" kernel = ifelse(hasArg("kernel"), list(...)$kernel, "Gauss") #or "Epan" if (hasArg(h_window)) return (.predictShapeAux(fdays,today,horizon,list(...)$h_window,kernel,simtype,TRUE)) # HACK for test reports: complete some days with a few NAs, for nicer graphics nas_in_serie = is.na(data$getSerie(today)) if (any(nas_in_serie)) { if (sum(nas_in_serie) >= length(nas_in_serie) / 2) return (NA) for (i in seq_along(nas_in_serie)) { if (nas_in_serie[i]) { #look left left = i-1 while (left>=1 && nas_in_serie[left]) left = left-1 #look right right = i+1 while (right<=length(nas_in_serie) && nas_in_serie[right]) right = right+1 #HACK: modify by-reference Data object... data$data[[today]]$serie[i] <<- if (left==0) data$data[[today]]$serie[right] else if (right==0) data$data[[today]]$serie[left] else (data$data[[today]]$serie[left] + data$data[[today]]$serie[right]) / 2. } } } # Determine indices of no-NAs days followed by no-NAs tomorrows first_day = max(today - memory, 1) fdays = (first_day:(today-1))[ sapply(first_day:(today-1), function(i) { !any(is.na(data$getSerie(i)) | is.na(data$getSerie(i+1))) }) ] # Indices of similar days for cross-validation; TODO: 45 = magic number sdays = getSimilarDaysIndices(today, limit=45, same_season=FALSE) # Function to optimize h : h |--> sum of prediction errors on last 45 "similar" days errorOnLastNdays = function(h, kernel, simtype) { error = 0 nb_jours = 0 for (i in intersect(fdays,sdays)) { # mix_strategy is never used here (simtype != "mix"), therefore left blank prediction = .predictShapeAux(fdays, i, horizon, h, kernel, simtype, FALSE) if (!is.na(prediction[1])) { nb_jours = nb_jours + 1 error = error + mean((data$getCenteredSerie(i+1)[1:horizon] - prediction)^2) } } return (error / nb_jours) } if (simtype != "endo") h_best_exo = optimize(errorOnLastNdays, c(0,10), kernel=kernel, simtype="exo")$minimum if (simtype != "exo") h_best_endo = optimize(errorOnLastNdays, c(0,10), kernel=kernel, simtype="endo")$minimum if (simtype == "endo") return (.predictShapeAux(fdays, today, horizon, h_best_endo, kernel, "endo", TRUE)) if (simtype == "exo") return (.predictShapeAux(fdays, today, horizon, h_best_exo, kernel, "exo", TRUE)) if (simtype == "mix") { h_best_mix = c(h_best_endo,h_best_exo) return (.predictShapeAux(fdays, today, horizon, h_best_mix, kernel, "mix", TRUE)) } }, # Precondition: "today" is full (no NAs) .predictShapeAux = function(fdays, today, horizon, h, kernel, simtype, final_call) { dat = data$data #HACK: faster this way... fdays = fdays[ fdays < today ] # TODO: 3 = magic number if (length(fdays) < 3) return (NA) if (simtype != "exo") { h_endo = ifelse(simtype=="mix", h[1], h) # Distances from last observed day to days in the past distances2 = rep(NA, length(fdays)) for (i in seq_along(fdays)) { delta = dat[[today]]$serie - dat[[ fdays[i] ]]$serie # Require at least half of non-NA common values to compute the distance if (sum(is.na(delta)) <= 0) #length(delta)/2) distances2[i] = mean(delta^2) #, na.rm=TRUE) } sd_dist = sd(distances2) if (sd_dist < .Machine$double.eps) sd_dist = 1 #mostly for tests... FIXME: simils_endo = if (kernel=="Gauss") exp(-distances2/(sd_dist*h_endo^2)) else { #Epanechnikov u = 1 - distances2/(sd_dist*h_endo^2) u[abs(u)>1] = 0. u } } if (simtype != "endo") { h_exo = ifelse(simtype=="mix", h[2], h) M = matrix( nrow=1+length(fdays), ncol=1+length(dat[[today]]$exo) ) M[1,] = c( dat[[today]]$level, as.double(dat[[today]]$exo) ) for (i in seq_along(fdays)) M[i+1,] = c( dat[[ fdays[i] ]]$level, as.double(dat[[ fdays[i] ]]$exo) ) sigma = cov(M) #NOTE: robust covariance is way too slow sigma_inv = solve(sigma) #TODO: use pseudo-inverse if needed? # Distances from last observed day to days in the past distances2 = rep(NA, nrow(M)-1) for (i in 2:nrow(M)) { delta = M[1,] - M[i,] distances2[i-1] = delta %*% sigma_inv %*% delta } sd_dist = sd(distances2) simils_exo = if (kernel=="Gauss") exp(-distances2/(sd_dist*h_exo^2)) else { #Epanechnikov u = 1 - distances2/(sd_dist*h_exo^2) u[abs(u)>1] = 0. u } } similarities = if (simtype == "exo") simils_exo else if (simtype == "endo") simils_endo else #mix simils_endo * simils_exo prediction = rep(0, horizon) for (i in seq_along(fdays_indices)) prediction = prediction + similarities[i] * dat[[ fdays_indices[i]+1 ]]$serie[1:horizon] prediction = prediction / sum(similarities, na.rm=TRUE) if (final_call) { params$weights <<- similarities params$indices <<- fdays_indices params$window <<- if (simtype=="endo") { h_endo } else if (simtype=="exo") { h_exo } else { #mix c(h_endo,h_exo) } } return (prediction) } ) )