#' Neighbors Forecaster #' #' Predict next serie as a weighted combination of "futures of the past" days, #' where days in the past are chosen and weighted according to some similarity measures. #' #' The main method is \code{predictShape()}, taking arguments data, today, memory, #' horizon respectively for the dataset (object output of \code{getData()}), the current #' index, the data depth (in days) and the number of time steps to forecast. #' In addition, optional arguments can be passed: #' \itemize{ #' \item local : TRUE (default) to constrain neighbors to be "same days within same #' season" #' \item simtype : 'endo' for a similarity based on the series only, #' 'exo' for a similaruty based on exogenous variables only, #' 'mix' for the product of 'endo' and 'exo', #' 'none' (default) to apply a simple average: no computed weights #' \item window : A window for similarities computations; override cross-validation #' window estimation. #' } #' The method is summarized as follows: #' \enumerate{ #' \item Determine N (=20) recent days without missing values, and followed by a #' tomorrow also without missing values. #' \item Optimize the window parameters (if relevant) on the N chosen days. #' \item Considering the optimized window, compute the neighbors (with locality #' constraint or not), compute their similarities -- using a gaussian kernel if #' simtype != "none" -- and average accordingly the "tomorrows of neigbors" to #' obtain the final prediction. #' } #' #' @usage NeighborsForecaster$new(pjump) #' #' @docType class #' @format R6 class, inherits Forecaster #' @aliases F_Neighbors #' NeighborsForecaster = R6::R6Class("NeighborsForecaster", inherit = Forecaster, public = list( predictShape = function(data, today, memory, horizon, ...) { # (re)initialize computed parameters private$.params <- list("weights"=NA, "indices"=NA, "window"=NA) # Do not forecast on days with NAs (TODO: softer condition...) if (any(is.na(data$getCenteredSerie(today)))) return (NA) # Determine indices of no-NAs days followed by no-NAs tomorrows fdays = .getNoNA2(data, max(today-memory,1), today-1) # Get optional args local = ifelse(hasArg("local"), list(...)$local, TRUE) #same level + season? simtype = ifelse(hasArg("simtype"), list(...)$simtype, "none") #or "endo", or "exo" if (hasArg("window")) { return ( private$.predictShapeAux(data, fdays, today, horizon, local, list(...)$window, simtype, TRUE) ) } # Indices of similar days for cross-validation; TODO: 20 = magic number cv_days = getSimilarDaysIndices(today, data, limit=20, same_season=FALSE, days_in=fdays) # Optimize h : h |--> sum of prediction errors on last N "similar" days errorOnLastNdays = function(window, simtype) { error = 0 nb_jours = 0 for (i in seq_along(cv_days)) { # mix_strategy is never used here (simtype != "mix"), therefore left blank prediction = private$.predictShapeAux(data, fdays, cv_days[i], horizon, local, window, simtype, FALSE) if (!is.na(prediction[1])) { nb_jours = nb_jours + 1 error = error + mean((data$getSerie(cv_days[i]+1)[1:horizon] - prediction)^2) } } return (error / nb_jours) } # TODO: 7 == magic number if (simtype=="endo" || simtype=="mix") { best_window_endo = optimize( errorOnLastNdays, c(0,7), simtype="endo")$minimum } if (simtype=="exo" || simtype=="mix") { best_window_exo = optimize( errorOnLastNdays, c(0,7), simtype="exo")$minimum } best_window = if (simtype == "endo") best_window_endo else if (simtype == "exo") best_window_exo else if (simtype == "mix") c(best_window_endo,best_window_exo) else #none: value doesn't matter 1 return(private$.predictShapeAux(data, fdays, today, horizon, local, best_window, simtype, TRUE)) } ), private = list( # Precondition: "today" is full (no NAs) .predictShapeAux = function(data, fdays, today, horizon, local, window, simtype, final_call) { fdays_cut = fdays[ fdays < today ] if (length(fdays_cut) <= 1) return (NA) if (local) { # TODO: 60 == magic number fdays = getSimilarDaysIndices(today, data, limit=60, same_season=TRUE, days_in=fdays_cut) if (length(fdays) <= 1) return (NA) # TODO: 10, 12 == magic numbers fdays = .getConstrainedNeighbs(today,data,fdays,min_neighbs=10,max_neighbs=12) if (length(fdays) == 1) { if (final_call) { private$.params$weights <- 1 private$.params$indices <- fdays private$.params$window <- 1 } return ( data$getSerie(fdays[1])[1:horizon] ) } } else fdays = fdays_cut #no conditioning if (simtype == "endo" || simtype == "mix") { # Compute endogen similarities using given window window_endo = ifelse(simtype=="mix", window[1], window) # Distances from last observed day to days in the past serieToday = data$getSerie(today) distances2 = sapply(fdays, function(i) { delta = serieToday - data$getSerie(i) mean(delta^2) }) simils_endo <- .computeSimils(distances2, window_endo) } if (simtype == "exo" || simtype == "mix") { # Compute exogen similarities using given window window_exo = ifelse(simtype=="mix", window[2], window) M = matrix( nrow=1+length(fdays), ncol=1+length(data$getExo(today)) ) M[1,] = c( data$getLevel(today), as.double(data$getExo(today)) ) for (i in seq_along(fdays)) M[i+1,] = c( data$getLevel(fdays[i]), as.double(data$getExo(fdays[i])) ) sigma = cov(M) #NOTE: robust covariance is way too slow # TODO: 10 == magic number; more robust way == det, or always ginv() sigma_inv = if (length(fdays) > 10) solve(sigma) else MASS::ginv(sigma) # Distances from last observed day to days in the past distances2 = sapply(seq_along(fdays), function(i) { delta = M[1,] - M[i+1,] delta %*% sigma_inv %*% delta }) simils_exo <- .computeSimils(distances2, window_exo) } similarities = if (simtype == "exo") simils_exo else if (simtype == "endo") simils_endo else if (simtype == "mix") simils_endo * simils_exo else #none rep(1, length(fdays)) similarities = similarities / sum(similarities) prediction = rep(0, horizon) for (i in seq_along(fdays)) prediction = prediction + similarities[i] * data$getSerie(fdays[i]+1)[1:horizon] if (final_call) { private$.params$weights <- similarities private$.params$indices <- fdays private$.params$window <- if (simtype=="endo") window_endo else if (simtype=="exo") window_exo else if (simtype=="mix") c(window_endo,window_exo) else #none 1 } return (prediction) } ) ) # getConstrainedNeighbs # # Get indices of neighbors of similar pollution level (among same season + day type). # # @param today Index of current day # @param data Object of class Data # @param fdays Current set of "first days" (no-NA pairs) # @param min_neighbs Minimum number of points in a neighborhood # @param max_neighbs Maximum number of points in a neighborhood # .getConstrainedNeighbs = function(today, data, fdays, min_neighbs=10, max_neighbs=12) { levelToday = data$getLevel(today) distances = sapply(fdays, function(i) abs(data$getLevel(i)-levelToday)) #TODO: 2, +3 : magic numbers dist_thresh = 2 min_neighbs = min(min_neighbs,length(fdays)) repeat { same_pollution = (distances <= dist_thresh) nb_neighbs = sum(same_pollution) if (nb_neighbs >= min_neighbs) #will eventually happen break dist_thresh = dist_thresh + 3 } fdays = fdays[same_pollution] max_neighbs = 12 if (nb_neighbs > max_neighbs) { # Keep only max_neighbs closest neighbors fdays = fdays[ sort(distances[same_pollution],index.return=TRUE)$ix[1:max_neighbs] ] } fdays } # compute similarities # # Apply the gaussian kernel on computed squared distances. # # @param distances2 Squared distances # @param window Window parameter for the kernel # .computeSimils <- function(distances2, window) { sd_dist = sd(distances2) if (sd_dist < .25 * sqrt(.Machine$double.eps)) { # warning("All computed distances are very close: stdev too small") sd_dist = 1 #mostly for tests... FIXME: } exp(-distances2/(sd_dist*window^2)) }