#' Neighbors Forecaster #' #' Predict next serie as a weighted combination of "futures of the past" days, #' where days in the past are chosen and weighted according to some similarity measures. #' #' The main method is \code{predictShape()}, taking arguments data, today, memory, #' predict_from, horizon respectively for the dataset (object output of #' \code{getData()}), the current index, the data depth (in days), the first predicted #' hour and the last predicted hour. #' In addition, optional arguments can be passed: #' \itemize{ #' \item local : TRUE (default) to constrain neighbors to be "same days within same #' season" #' \item simtype : 'endo' for a similarity based on the series only, #' 'exo' for a similarity based on exogenous variables only, #' 'mix' for the product of 'endo' and 'exo', #' 'none' (default) to apply a simple average: no computed weights #' \item window : A window for similarities computations; override cross-validation #' window estimation. #' } #' The method is summarized as follows: #' \enumerate{ #' \item Determine N (=20) recent days without missing values, and followed by a #' tomorrow also without missing values. #' \item Optimize the window parameters (if relevant) on the N chosen days. #' \item Considering the optimized window, compute the neighbors (with locality #' constraint or not), compute their similarities -- using a gaussian kernel if #' simtype != "none" -- and average accordingly the "tomorrows of neigbors" to #' obtain the final prediction. #' } #' #' @usage # NeighborsForecaster$new(pjump) #' #' @docType class #' @format R6 class, inherits Forecaster #' @aliases F_Neighbors #' NeighborsForecaster = R6::R6Class("NeighborsForecaster", inherit = Forecaster, public = list( predictShape = function(data, today, memory, predict_from, horizon, ...) { # (re)initialize computed parameters private$.params <- list("weights"=NA, "indices"=NA, "window"=NA) # Do not forecast on days with NAs (TODO: softer condition...) if (any(is.na(data$getSerie(today-1))) || (predict_from>=2 && any(is.na(data$getSerie(today)[1:(predict_from-1)])))) { return (NA) } # Get optional args local = ifelse(hasArg("local"), list(...)$local, TRUE) #same level + season? simtype = ifelse(hasArg("simtype"), list(...)$simtype, "none") #or "endo", or "exo" opera = ifelse(hasArg("opera"), list(...)$opera, FALSE) #operational mode? # Determine indices of no-NAs days preceded by no-NAs yerstedays tdays = .getNoNA2(data, max(today-memory,2), ifelse(opera,today-1,data$getSize())) if (!opera) tdays = setdiff(tdays, today) #always exclude current day # Shortcut if window is known or local==TRUE && simtype==none if (hasArg("window") || (local && simtype=="none")) { return ( private$.predictShapeAux(data, tdays, today, predict_from, horizon, local, list(...)$window, simtype, opera, TRUE) ) } # Indices of similar days for cross-validation; TODO: 20 = magic number cv_days = getSimilarDaysIndices(today, data, limit=20, same_season=FALSE, days_in=tdays, operational=opera) # Optimize h : h |--> sum of prediction errors on last N "similar" days errorOnLastNdays = function(window, simtype) { error = 0 nb_jours = 0 for (i in seq_along(cv_days)) { # mix_strategy is never used here (simtype != "mix"), therefore left blank prediction = private$.predictShapeAux(data, tdays, cv_days[i], predict_from, horizon, local, window, simtype, opera, FALSE) if (!is.na(prediction[1])) { nb_jours = nb_jours + 1 error = error + mean((data$getSerie(cv_days[i])[predict_from:horizon] - prediction)^2) } } return (error / nb_jours) } # TODO: 7 == magic number if (simtype=="endo" || simtype=="mix") { best_window_endo = optimize( errorOnLastNdays, c(0,7), simtype="endo")$minimum } if (simtype=="exo" || simtype=="mix") { best_window_exo = optimize( errorOnLastNdays, c(0,7), simtype="exo")$minimum } best_window = if (simtype == "endo") best_window_endo else if (simtype == "exo") best_window_exo else if (simtype == "mix") c(best_window_endo,best_window_exo) else #none: value doesn't matter 1 return( private$.predictShapeAux(data, tdays, today, predict_from, horizon, local, best_window, simtype, opera, TRUE) ) } ), private = list( # Precondition: "yersteday until predict_from-1" is full (no NAs) .predictShapeAux = function(data, tdays, today, predict_from, horizon, local, window, simtype, opera, final_call) { tdays_cut = tdays[ tdays != today ] if (length(tdays_cut) == 0) return (NA) if (local) { # limit=Inf to not censor any day (TODO: finite limit? 60?) tdays = getSimilarDaysIndices(today, data, limit=Inf, same_season=TRUE, days_in=tdays_cut, operational=opera) # if (length(tdays) <= 1) # return (NA) # TODO: 10 == magic number tdays = .getConstrainedNeighbs(today, data, tdays, min_neighbs=10) if (length(tdays) == 1) { if (final_call) { private$.params$weights <- 1 private$.params$indices <- tdays private$.params$window <- 1 } return ( data$getSerie(tdays[1])[predict_from:horizon] ) } max_neighbs = 10 #TODO: 12 = arbitrary number if (length(tdays) > max_neighbs) { distances2 <- .computeDistsEndo(data, today, tdays, predict_from) ordering <- order(distances2) tdays <- tdays[ ordering[1:max_neighbs] ] print("VVVVV") print(sort(distances2)[1:max_neighbs]) print(integerIndexToDate(today,data)) print(lapply(tdays,function(i) integerIndexToDate(i,data))) print(rbind(data$getSeries(tdays-1), data$getSeries(tdays))) } } else tdays = tdays_cut #no conditioning if (simtype == "endo" || simtype == "mix") { # Compute endogen similarities using given window window_endo = ifelse(simtype=="mix", window[1], window) # Distances from last observed day to selected days in the past # TODO: redundant computation if local==TRUE distances2 <- .computeDistsEndo(data, today, tdays, predict_from) simils_endo <- .computeSimils(distances2, window_endo) } if (simtype == "exo" || simtype == "mix") { # Compute exogen similarities using given window window_exo = ifelse(simtype=="mix", window[2], window) distances2 <- .computeDistsExo(data, today, tdays) simils_exo <- .computeSimils(distances2, window_exo) } similarities = if (simtype == "exo") simils_exo else if (simtype == "endo") simils_endo else if (simtype == "mix") simils_endo * simils_exo else #none rep(1, length(tdays)) similarities = similarities / sum(similarities) prediction = rep(0, horizon-predict_from+1) for (i in seq_along(tdays)) { prediction = prediction + similarities[i] * data$getSerie(tdays[i])[predict_from:horizon] } if (final_call) { private$.params$weights <- similarities private$.params$indices <- tdays private$.params$window <- if (simtype=="endo") window_endo else if (simtype=="exo") window_exo else if (simtype=="mix") c(window_endo,window_exo) else #none 1 } return (prediction) } ) ) # getConstrainedNeighbs # # Get indices of neighbors of similar pollution level (among same season + day type). # # @param today Index of current day # @param data Object of class Data # @param tdays Current set of "second days" (no-NA pairs) # @param min_neighbs Minimum number of points in a neighborhood # @param max_neighbs Maximum number of points in a neighborhood # .getConstrainedNeighbs = function(today, data, tdays, min_neighbs=10) { levelToday = data$getLevelHat(today) # levelYersteday = data$getLevel(today-1) distances = sapply(tdays, function(i) { # sqrt((data$getLevel(i-1)-levelYersteday)^2 + (data$getLevel(i)-levelToday)^2) abs(data$getLevel(i)-levelToday) }) #TODO: 1, +1, +3 : magic numbers dist_thresh = 1 min_neighbs = min(min_neighbs,length(tdays)) repeat { same_pollution = (distances <= dist_thresh) nb_neighbs = sum(same_pollution) if (nb_neighbs >= min_neighbs) #will eventually happen break dist_thresh = dist_thresh + ifelse(dist_thresh>1,3,1) } tdays = tdays[same_pollution] # max_neighbs = 12 # if (nb_neighbs > max_neighbs) # { # # Keep only max_neighbs closest neighbors # tdays = tdays[ order(distances[same_pollution])[1:max_neighbs] ] # } tdays } # compute similarities # # Apply the gaussian kernel on computed squared distances. # # @param distances2 Squared distances # @param window Window parameter for the kernel # .computeSimils <- function(distances2, window) { sd_dist = sd(distances2) if (sd_dist < .25 * sqrt(.Machine$double.eps)) { # warning("All computed distances are very close: stdev too small") sd_dist = 1 #mostly for tests... FIXME: } exp(-distances2/(sd_dist*window^2)) } .computeDistsEndo <- function(data, today, tdays, predict_from) { lastSerie = c( data$getSerie(today-1), data$getSerie(today)[if (predict_from>=2) 1:(predict_from-1) else c()] ) sapply(tdays, function(i) { delta = lastSerie - c(data$getSerie(i-1), data$getSerie(i)[if (predict_from>=2) 1:(predict_from-1) else c()]) # sqrt(mean(delta^2)) sqrt(sum(delta^2)) }) } .computeDistsExo <- function(data, today, tdays) { M = matrix( ncol=1+length(tdays), nrow=1+length(data$getExo(1)) ) M[,1] = c( data$getLevelHat(today), as.double(data$getExoHat(today)) ) for (i in seq_along(tdays)) M[,i+1] = c( data$getLevel(tdays[i]), as.double(data$getExo(tdays[i])) ) sigma = cov(t(M)) #NOTE: robust covariance is way too slow # TODO: 10 == magic number; more robust way == det, or always ginv() sigma_inv = if (length(tdays) > 10) solve(sigma) else MASS::ginv(sigma) # Distances from last observed day to days in the past sapply(seq_along(tdays), function(i) { delta = M[,1] - M[,i+1] delta %*% sigma_inv %*% delta }) }